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A test-particle approach to study transport processes in two-dimensional random electric field is proposed.
Despite such approach is not as complete as self-consistent one it allows a better control of problem parameters and
makes results more tractable. A frozen electric field is considered. Because of a strong particle trapping effect the
problem is a difficult test for statistical methods. Earlier in our previous works particle transport was examined in a
drift approximation; here we study finite Larmor radius effects on particle transport. Some methods to account for a
finite Larmor radius are considered as generalization of our moment approximation. Results of analytical
approximations and direct numerical simulation are compared, and most accurate method is found. The difference
between dispersion of particle and gyrocentre displacement is discussed.

PACS: 52.65.Cc

INTRODUCTION

A drift approximation is widely used to describe
transport of particles in plasmas. It is often accepted that
the drift approximation gives a main contribution to
transport, and the effects of finite Larmor radius can be
taken into account as corrections. Along with this,
account for exact motion of particles can influence the
results significantly.

Recently the decorrelation trajectory method was
proposed to study two-dimensional diffusion of particles
in constant magnetic and random electric fields [1, 2].
In our work [3] an alternative approach to this problem
in drift approximation was developed. In the paper [4]
the decorrelation trajectory method was compared with
our approach and some advantages of latter were
shown. Here we generalize our moment approximation
to take into account finite Larmor radius effects. Few
different procedures of gyroaveraging are considered.

Direct numerical simulation of particle motion in
constant magnetic and random electric field is
performed. Statistical characteristics of particle
ensemble obtained in simulation are used to check the
predictions of analytical approaches. The most effective
gyroaveraging procedure is found.

1. MODEL

We consider motion of test particles in a constant
magnetic field perpendicular to a frozen random electric
field given by the potential

AZexp(

where 4 is a normalized amplitude
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and set of N, = N, x Nywave vectors are
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Here n=1,..., N, m = 1,..., Ng and {¢;} is the set of
random phases that determines a realization of random
potential (3).
The Eulerian correlation function of potential (1) in
a laboratory frame is
x/2) Iy (7

Ch (x)= (27[)71 exp(—zz2

Corresponding correlation function of velocity is
obtained as derivative of the potential correlation
function (4)

Cf;ud (X) =

Particle motion is governed by equations for coordinate
of gyrocentre y, and gyroradius p

xz/z). 4)
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dp; 1 dt=;00 (g, +p)/ g Lj=%y,  (6)
dp, ldr=—&;(00(x, +p)/ 01y +270;/ 5).  (7)

where &, &y = 1. The solutions of 2N,
equations (6, 7) are found numerically by using the
Runge-Kutta method of the 5-th order. Then obtained
trajectories are averaged over N, realizations, and a
mean square displacement is calculated. Further it is
compared with a prediction of the analytical models.
Parameters of numerical models were the following:
Knax = 2, dimensionless amplitude of potential o, = 0.1,
and N= N, x Ng= 1440 (N.= 20, Ng=72).

2. ANALYTICAL APPROXIMATION

The analytical approximation is based on the Taylor
relation

1dA(r)
D(r)=5—= J-d )

that gives a diffusion coefficient D(7) and mean square
displacement A(7) as an integral over time of the
Lagrangian correlation function of velocity components
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along particle trajectories C“,,(7). This correlation
function is unknown and should be derived from the
Eulerian correlation function (5). There is no
mathematically direct way to obtain it in general case,
so various approximations are used.

We start from the moment approximation for a drift
motion proposed in [3]. It was analyzed and compared
with the decorrelation trajectory method [1, 2] in [4].
According to the moment approximation the relation
between the Eulerian and the Lagrangian correlation
functions for an isotropic field is given by

Copw (1) = Cl, (X(2)), Xi(£) =y (7). )

Here we generalize our previous approach [3, 4] to
account for a finite Larmor radius. Two methods are
considered: averaging over the Larmor gyration of the
Eulerian correlation function (5)

Coit (a)=(27) " [diexp(=ivory) L, () o (10) (10)

and averaging of the random field (1) that gives for the
Eulerian correlation function (5) the different expression

CL ()= (27) [ dexp(=iiory) CL,, ()5 (k) (1)

These expressions were used in the works [1, 2] in

application to the decorrelation trajectories method.
Combining the assumption (9) with equations

(4,5, 8) and (10) or (11) we obtain the final equation for

a mean square displacement in the moment
approximation in a form

2 2 E A,B

d’A,, 1de =CE (A ). (12)

The correlation functions (10, 11) are calculated by
means of numerical integration. Expansion of Bessel
function are taken as

Jo(xp) =1 —i?p? 14+t pt 164 —kCp® 12304+ ...,

for kp < 1, or asymptotic
Jo(kp) ~ 1/ Jmwp

for xp > 1. Results of these approximations are
compared with direct numerical simulation in the next
section.

3. RESULTS OF SIMULATION

The results are presented in Figs. 1-6. The mean
square displacement calculated from numerical
simulation (NS) is obtained for ensemble of N, = 107
realizations of random potential (1). Results of
calculation are given for four values of initial Larmor
radius p(0) =0, 0.1, 1, 10.

In Fig.1 temporal evolution of mean square
displacement of gyrocentres obtained from numerical
simulation for a various initial Larmor radius is shown.
The results for initial radius p(0) = 0.1 are found to be
very close to p(0) = 0, the difference is of the order of
fluctuations. For larger initial radius difference becomes
significant, thus the mean square displacement for
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p(0) =10 drops almost in four times in compare to
p0)=0.
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Fig. 1. Mean square displacement of gyrocentres
obtained from numerical simulation (NS, N, = 10°)
for initial Larmor radius p(0) =0, 0.1, 1, 10
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Fig. 2. Mean square displacement of particle

gyrocentres for initial Larmor radius p(0) = 0.
Numerical simulation (NS, N, = 10°), and the moment
approximation (MA)
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Fig. 3. Mean square displacement of gyrocentres
for p(0) = 0.1. Numerical simulation (NS, N, = 10")
and analytical model (MA). Different methods
of account for Larmor radius effect give
the same results
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The comparison of mean square displacements of
gyrocentres found from numerical simulation and
using the moment approximation (MA) for initial
Larmor radius p(0) = 0 is demonstrated in Fig. 2. The
moment approximation recovers the same subdiffusive
behaviour as direct numerical simulation with a
quantitative agreement.

The results for a small initial Larmor radius p(0) =
0.1 are shown in Fig. 3. The difference with the results
for radius p(0) = 0 (see Fig.2) is small, that is in
agreement with the results given in Fig. 1. All
approximations of equation (10) — A, and equation
(11) — B (using series (Exp) and numerical integration
(NI)) give a similar curves; difference between
methods of gyroaveraging is negligible for a small
gyroradii.

Mean square displacement of gyrocentres for
gyroradius p(0) = 10 is shown in Fig. 4. Temporal
evolution of mean square displacement obtained by the
moment approximation B (both with asymptotic (4sm)
and by numerical integration (NI)) is found to be in
quantitative  agreement with direct numerical
simulation. On the contrary the results obtained with
approximation A, Egs. (10), (by numerical integration
(NI) and with asymptotic (4sm)) are inconsistent with
results of direct numerical simulation in a range of
large gyroradii.

We may conclude that the moment approximation
with gyroaveraging based on equation (11) —by means
of numerical integration, series expansion and
asymptotyc — quantitatively recovers the evolution of
mean square displacement of gyrocentres obtained
from direct numerical simulation. And thus it can be
considered as the sufficiently accurate method to
account for finite Larmor radius effects.

Now we switch from consideration of gyrocenters
Za statistics to examination of exact particle
trajectories ¥y = y; + p. In Fig. 5 the mean square
displacement of particles 4, obtained from direct
numerical simulation for N, = 107 realizations is given.
It demonstrates a difference between gyrocentre (see
Fig. 1) and particle trajectory statistics. For a small
initial Larmor radius, p(0) < I, there is no significant
difference between dispersion of gyrocentres and exact
particle trajectories. But with increase of the initial
radius p(0) > 1 the difference becomes noticeable. For
p(0) =10 initial evolution of dispersion of guiding
centre and exact particle position is completely
different. The reason is a contribution from a mean
square displacement of Larmor radius, its temporal
evolution is shown in Fig. 6. It saturates with time: for
a small initial Larmor radius a saturation value is
negligible. Whether initial value is not small it grows
to large magnitude. For any initial value Larmor radius
reaches a saturation value within a finite time interval.
Consequently a mean square displacement of particle
trajectories would be shifted against a curve for
gyrocentre dispersion.
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Fig. 4. Mean square displacement of gyrocentres for
p(0) = 10. Numerical simulation (NS, N, = 10°) and
analytical model (MA) with approximation given by
Eq.(10) — (A), and Eq. (11) — (B); (Asm) — analytical
asymptotic, (NI) — numerical integration
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Fig. 5. Mean square displacement of particles
trajectories obtained by numerical simulation (NS,
N, = 10°) for initial Larmor radius p(0) = 0, 0.1, 1, 10
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Fig. 6. Mean square displacement of Larmor radius
obtained by numerical simulation (NS, N, = 10°)
for initial Larmor radius p(0) =0, 0.1, 1, 10

CONCLUSIONS

Temporal evolution of a mean square displacement
of gyrocentres found from the direct numerical
simulation and from the moment approximation based
on a gyroveraging of random potential were compared.
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For initial Larmor radius in wide range, p(0) = 0, 0.1,
1, 10, analytical method based on Eq. (11) gives a
satisfactory quantitative agreement. On the contrary the
moment approximation using other gyroaveraging of
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BJIMSTHUE KOHEYHOI' O JIAPMOPOBCKOT O PAJTNYCA HA TYPBYJEHTHBIN MEPEHOC
IMPOBHBIX YACTHIJ

A.H. Yepnsax, B.U. 3acenko, A.I. 3azopoonuii

IIpemiokeH MeTOH M3Y4YCHHS TMPOLECCOB IIEPEHOCa MPOOHBIX YacTUI[ B JBYXMEPHOM CIyYaiiHOM
SJIEKTPHYCCKOM TToJie. HecMOTps Ha ero HEMOJTHOTY B CPABHEHUH C CAMOCOTJIACOBAHHBIM OIMCAHHUEM OH MTO3BOJISCT
Jy4YIlie YOpaBJsATh MapaMeTpaMu 3a7aud W JejiacT Pe3yNIbTaThl HCCIEeNOBaHus Ooliee 00BICHUMBIMU. PaccMoTpeHO
3aMOpOKEHHOE eKTprdyeckoe moiie. [Iockobky 3¢ (GeKThl 3aXBaTa YaCTHIl CHIIBHBI, 3Ta 3a/1a4a CIyKUT XOPOIIUM
TECTOM JIJIsl TIPOBEPKU CTATUCTUYECKUX METOIOB. PaHee mepeHOC 4acThIl ObUT PacCMOTPEH HaMH B Ipei(poBoM
NpUOIMKEHUH; B JaHHON paboTe MbI HCCIIEyeM BIMSHHE KOHEYHOIO JIApPMOPOBCKOIO pajuyca Ha 3TOT MPOIECC.
PaccMOTpeHO HECKOIBKO CIoco0oB 0000IEeHUsT pa3BUTOTO paHee npeidoBoro mpubmmkeHus. CpaBHEHHE
pe3yJbTaTOB, MOJYYEHHBIX HA OCHOBE AHAIUTHYECKUX MNPUOIMKEHUH M MPSIMOr0 YHCICHHOTO MOJSTUPOBAHMUS,
MO3BOJIUIIO OMPE/CIUTh Hanbosee TOYHbI METO y4éTa KOHEYHOrO JIAPMOPOBCKOTO panuyca. Y AeIeHO BHUMAaHUE
Pa3IUYMIO B AUCIIEPCUH CMELICHUS YaCTHIl K COOTBETCTBYIOUIMX BEAYIIUX IEHTPOB.

BIIJINB CKIHHEHHOTI'O IAPMOPIBCBKOTI'O PAATYCY HA TYPBYJIEHTHE IEPEHECEHHSA
MPOBHUX YACTHUHOK

O.M. Yepnsax, B.1. 3acenko, A.I. 3azopooniii

3anponoHOBaHO METOJ JOCIiHKSHHS TPOIIECiB MePEHECEHHs TPOOHUX YaCTHHOK Y TBOMIPHOMY BHIIQIKOBOMY
enekTpuyHOoMy momi. [Tompu #oro HEMOBHOTY B HOpPIBHSHHI i3 CAMOY3TOJDKEHHM OIMCOM BiH JIO3BOJISIE Kparle
KepyBaTH MapaMeTpaMu 3ajJiadi, CIpHs€e KPamoMy pO3yMIHHIO pe3ybTaTiB JOCTiKEHHS. PO3TIsSIHYTO 3aMOpOKeHe
enexkTpuuHe mosie. Yepe3 cuwiibHHN e(deKT 3aXOMJICHHS YaCTHHOK I 3a/ada € JOOpUM TECTOM IJisl MepeBipKU
CTaTUCTHYHHUX MeTOXiB. PaHilre nmepeHeceHHs 9aCTHHOK OyJI0 pO3MIIIHYTO HaMHU y ApelioBoMy HAOMIDKEHHI; TYT
MU JOCNIDKYEMO BIUTHB CKiHYCHHOTO JIAPMOPIBCHKOTO pajiycy Ha Ieid mporec. Po3miIsiHyTO MeKinbKa MNUISAXiB
y3arajgbHEHHS PO3BHHYTOrO paHiuie apeiidoBoro HaOmrkeHHs. [TopiBHSHHS pe3ysbTaTiB, OTPUMAHHX Ha OCHOBI
AHATITHYHUX HAOJIIKEHb Ta MPSIMOTO YHCIOBOTO MOJICITIOBAHHS, TO3BOJIIO BH3HAYUTU HAHOUIBII TOYHUN METON
BpaxyBaHHS CKIHUCHHOTO JIapMOPiBChKOTO paniycy. [IpuaineHo yBary pisHuUI B qucnepcii 3MilIEHHS YaCTHHOK Ta
BIJINIOBIJTHUX BEIy4UX IICHTPIB.
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