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Problem of the plasma simulation area decomposition for Poisson equation solution via PIC method using 

parallel computing is treated. Modification of the existing method moving to reduction of the computational 

complexity is discussed. The approach to use different grid spacing for subdomains is proposed. Method of 

approximate solution that results in the substantial decrease of the data transmitted is brought forward. 
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INTRODUCTION 
 

Computer simulation via PIC method 

demonstrates the high accuracy of the plasma 

behavior description [1]. For the wide class of 

problems (e.g., for beam-plasma discharge – see [2]) 

the characteristic length of the system is of the order 

of 10
3
 Debye radii and the simulation time is of the 

order of 10
3
 Langmuir periods. But PIC method needs 

the large RAM capacity and high computing 

performance. Consequently such problems need the 

clusters which are often based on single program, 

multiple data (SPMD) with the distributed memory 

architecture [3]. Algorithms used for these clusters 

must satisfy such important conditions as minimal 

volume of data transferred between the mesh nodes 

and uniform nodes' loading. 

The integration of the field equations (Poisson 

equation in electrostatic case) remains a difficult task, 

because significant data non-locality is present. 

Besides, there is a problem of dynamic balancing for 

the inhomogeneous plasma case (for the beam-plasma 

discharge, for example) that is not considered in the 

existing literature. For inhomogeneous plasma the 

Debye length can vary in space, but for correct 

simulation we need to use the computation grid 

spacing less than Debye length [1]. On the other hand, 

small grid spacing usage is not optimal for regions with 

large Debye length. Consequently it is necessary to 

decompose the problem into subdomains with different 

spacing. In this paper the domain decomposition 

method which supports this requirement is proposed. 

Besides, it is shown how to obtain maximal 

computation productivity and to reduce the transmitted 

data number by using approximate solving. 
 

1. EXISTING DOMAIN DECOMPOSITION 

METHOD AND  ITS EXTENSION FOR  

NON-UNIFORM GRIDS 
 

Poisson equation solving method based on 

decomposition of the main problem into 

subdomains with zero Dirichlet boundary 

conditions and calculating of the screen charges at 

the subdomains' interfaces was proposed in [5]. For 

subdomains' joining the author  suggests to add the 

Laplace equation solution with the boundary 

potentials determined by interfaces' screen charges 

to the Poisson equation solution for subdomains. 

Recursive domain joining method is proposed. 

But the above mentioned method is not valid for 

subdomains with different spacing. Besides, this method 

requires the multiply Laplace equation solving (4 times in 

2D case). 

The following formula is used for computation of the 

screen charges ρscr,i on the vertical interface: 

, , , ,

, 2 2

2 0left i right i left i right i

scr i

x xh h


     
  ,   (1) 

where Φleft,i and Φright,i are pre-boundary potentials of left 

and right subdomains, respectively, and i =0...Ly. 

This formula can’t be used if subdomains have different 

spacing along the interface, so arrays Φleft,i1 and Φright,i2 

 have different sizes  i1 =0...Ly1,  i2 =0...Ly2. 

We propose to use the spectral representation of the 

preboundary potentials and screen charges, so 
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where  k =0...max(Ly1, Ly2). This formula is independent 

on the grids' step and it is correct for any Φleft,k and Φright,k 

size. The missing high frequency components of 

spectrum for coarse grid are vanished. For computing of 

the interface potentials we use eigenvalues of the problem 

with height max(Ly1, Ly2) and width Lx1+Lx2+1. It will be 

shown that calculation of the spectral representations can 

be obtained directly without additional 1D fast Fourier 

transforms (FFTs). 

Formula (2) isn’t correct in the case of subdomains 

with different spacing in the direction perpendicular to 

the interface, because hx is not uniform. In this case it is 

necessary to modify the interface potentials' computation 

algorithm. The following approach is proposed: the 

joining problem with non-uniform grid spacing can be 

considered as a sum of two joining problems with the 

uniform spacing assuming that one of the subdomains is 

vanished. So one can compute two interface charges' 

distribution: 
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Then for each screen charges' layer ρscr1,i and ρscr2,i we 

can compute potentials via formulas from [5]. Sum of the 

computed potentials gives the desired interface potential. 

Note that subdomains grid spacing can’t be arbitrary; 

the length of combined domain must be divisible by hx1 

and hx2. 
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2. MODIFICATION OF THE POISSON 

EQUATION SOLVING 
 

As it was shown in [5], joining of domains 

requires two actions: solving of Poisson equation with 

zero Dirichlet boundary conditions for finding the 

pre-boundary potentials and solving the Laplace 

equation with interfaces' potentials. The sum of these 

solutions gives the correct solution for subdomain 

potential. We can improve this performance by 

combining Poisson and Laplace solving. Let us 

consider the Poisson solving for 2D Fourier 

expansion method. Using this method we need to 

compute 2D spectrum of the input charges' density 
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by FFT (DST-I for this case), to divide the spectrum 

by eigenvalues 
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and then to compute the potential distribution from 

the spectrum by inverse FFT 
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(the normalizing coefficient is missed). But one can 

compute the pre-boundary potentials without full 2D 

FFT by computing only one sum of (6) for i=0, i=Lx–

1 and j=0, j=Ly–1. For adding the Laplace equation 

solution to the Poisson equation solution it is possible 

to add the Laplace boundary conditions to the pre-

boundary charges of the Poisson equation [6] or to 

add the spectrum of this pre-boundary charges to the 

Poisson equation spectrum by using (4) for i=0, 

i=Lx–1 and j=0, j=Ly–1. So only two full 2D FFTs 

and O(LyLx) additional steps can be used instead of 

four FFTs. It is also important that we propose to use 

the spectral representation of the interface potentials. 

Consequently we don’t need any additional 1D FFTs 

for finding the pre-boundary and interfaces' 

potentials, we can use the spectra directly. 

 

3. OPTIMIZATION OF COMPUTATIONS 

FOR THE DECOMPOSITION IN TWO 

DIRECTIONS 
 

As it was shown above, we don’t need to solve 

Poisson equation and Laplace equation separately. 

But in the case of decomposition in two directions we 

need to compute the pre-boundary potentials when 

the perpendicular interfaces' potentials are found. We 

can use the Laplace equation solving with 

O(LxLylog(Lx)) complexity [5]. But the better way can 

be proposed. Consider computation of the bottom 

pre-boundary subdomain potentials Φbottom,l  when left 

interface potentials Φleft,k  are found. By adding 

interface potentials as the pre-boundary charges of the 

Poisson equation and expanding 1D charges' 

spectrum into 2D Poisson spectrum we can obtain the 

following formulas: 
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where l=0, …, Lx–1, k=0, ..., Ly–1. 

So, we can compute Φbottom,l by O(LyLx) additional steps. 

 

4. APPROXIMATE INTERFACE POTENTIAL 

FINDING TO REDUCE AMOUNT OF THE 

TRANSMITTED DATA 
 

When decomposition in two directions is used the 

interface and pre-boundaries points are distributed into 

several nodes. There are no effective methods for the 

parallel FFT computation using the distributed memory 

systems, therefore it is necessary to send all the pre-

boundary points into one main node for interface 

potentials' computing and then to send the obtained 

potentials to each node (Figure). The amount of data 

transmitted to the main node may be too large. Besides, 

each node can use the different grid spacing, so we need 

to compute FFT for the non-uniform grid. It’s 

inconvenient to use formulas from [5] in this case. 

Another way can be proposed. Finding of the interface 

potentials scr  by the Fourier method can be replaced by 

sum of solutions of 1D screened Poisson equations: 
1
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where l=0,…,Ly is the number of spatial harmonic, i0 is 

the interface position. This result can be obtained via 

expanding of the Poisson solution in the single series (see 

[6], p. 194). 
 

 

 Data transmission for layers' joining 

 

For high spatial harmonics with l>>1 parameter l 

depends weakly on l, so we can use the piecewise 

approximation  for (11) and reduce the number of 

screened equations in the set (10). 

In practice, we need only 6 pieces for approximation 

of the harmonics' solution in the range n=Lx/8, …, Lx–1 
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with the computer double type precision (10
–15

). For 

solving of each screened Poisson equation as the 

tridiagonal problem we need to send only two values 

between nodes. We use the bisection algorithm [7] for 

minimizing the successive data exchange up to the 

value O(log(N)), where N is the number of nodes in 

the layer. In the low frequency range n=0, ..., Lx/8 we 

use FFT method, so the full data transmitted number 

is C'=2(Lx/8+6) (for the same number of 

approximation terms) instead of C=2Lx. Note that if 

we do not perform the high frequency filtration for 

input ρscr, the approximate solution (9) with the 

reduced number of terms will contain incorrect low 

frequency components. Since we know the piecewise 

approximation for αl, we can find the low frequency 

dispersion of solution (9) and subtract it from FFT 

low frequency solution dispersion. 

For recursive domain only joining of the low 

frequency components is used. So full algorithm of 

the method contains the following steps (for 

horizontal layers): 

1. Finding of the interfaces' screen charges by 

sending, e.g., the bottom layer pre-boundary potential 

to the top layer. The node pre-boundary potentials are 

sent only to the nodes with the common borders. 

2. For each interface the high frequency solution 

of the potentials for main problem is found. 

3. For each interface the low frequency spectrum 

of charges is computed. 

4. The low frequency solution for the interface 

potentials is found using the recursive domain joining 

method. 

5. The low frequency solutions obtained at the 

step 4 are added to the high frequency solutions 

obtained at the step 2. 

 

CONCLUSIONS 
 

1. Existing packages for PIC simulation do not 

contain effective methods of parallel Poisson 

equation solving. 

2. Inhomogeneous plasma simulation needs the 

dividing of the simulation area into subdomains with 

different grid spacing. 

3. Domain decomposition method for subdomains 

with different spacing is proposed. 

4. The scheme of calculating for minimizing the 

number of computations is proposed. The proposed 

calculation needs the number of steps close to the method 

of expansion into the double Fourier series. 

5. The transmitted data minimization method using 

approximate solving is proposed.  
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ПРЯМОЙ ПАРАЛЛЕЛЬНЫЙ МЕТОД РЕШЕНИЯ УРАВНЕНИЯ ПУАССОНА  

С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНОГО ШАГА СЕТОК ДЛЯ МОДЕЛИРОВАНИЯ МЕТОДОМ 

КРУПНЫХ ЧАСТИЦ В ЯЧЕЙКАХ 
 

Д.И. Дадыка, И.А. Анисимов 
 

Рассмотрена проблема декомпозиции области моделирования для уравнения Пуассона методом крупных 

частиц в ячейках. Предложены пути минимизации вычислительных затрат. Продемонстрирована 

возможность использования различного шага сеток для подобластей. Предложен метод значительного 

снижения объёма передаваемых между вычислительными узлами данных.  

 

ПРЯМИЙ ПАРАЛЕЛЬНИЙ МЕТОД РОЗВ'ЯЗАННЯ РІВНЯННЯ ПУАССОНА  

З ВИКОРИСТАННЯМ РІЗНОГО КРОКУ СІТОК ДЛЯ МОДЕЛЮВАННЯ МЕТОДОМ КРУПНИХ 

ЧАСТИНОК У КОМІРКАХ 
 

Д.І. Дадика, І.О. Анісімов 
 

Розглянуто проблему декомпозиції області моделювання для рівняння Пуассона методом крупних 

частинок у комірках. Запропоновано шляхи мінімізації обчислювальних витрат. Продемонстровано 

можливість використання різного кроку сіток для підобластей. Запропоновано метод значного зниження 

об'єму даних, що передаються між обчислювальними вузлами. 


