CYCLOTRON WAVE ABSORPTION IN D-SHAPED TOKAMAKS
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Transverse dielectric susceptibility elements are derived for radio-frequency waves in a large aspect ratio toroidal
plasma with D-shaped magnetic surfaces by solving the Vlasov equation for untrapped and usual t-trapped particles
under moderate elongation and small triangularity in the case, when the so-called d-trapped particles are absent.
These dielectric characteristics are suitable for estimating the wave dissipation by the fundamental cyclotron
resonance damping in the frequency range of ion-cyclotron and electron cyclotron resonances.
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INTRODUCTION

To achieve the fusion conditions in tokamaks an
additional plasma heating must be employed. Effective
schemes of the heating and current drive in these
devices can be realized by the wave dissipation in the
frequency range of ion-cyclotron (ICR) and/or electron-
cyclotron (ECR) resonances. As is well known, Kinetic
wave theory of high-temperature plasmas should be
developed by solving the Vlasov-Maxwell's equations.
However, this problem is not simple even in the scope
of the linear theory since to solve the wave equations we
should use the suitable dielectric tensor valid in the
given frequency range for realistic plasma models. In
this paper the transverse susceptibility elements are
derived for radio-frequency waves in a two-dimensional
(2D) axisymmetric tokamak with D-shaped magnetic
surfaces under moderate elongation and small
triangularity using an approach developed in [1-3].

1. REDUCED VLASOV EQUATION

To describe an axisymmetric D-shaped tokamak we use
the quasi-toroidal coordinates (r,8,¢) connected with the
cylindrical ones (R,4,Z) as (see Fig.1)
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where Ry is the radius of the magnetic axis; a and b are,
respectively, the minor and major semiaxes of the cross-
section of the external magnetic surface. In this model,
all magnetic surfaces have the same elongation equal to
b/a; their triangularity is small d/a<<1, the Shafranov
shift is not accounted; the cylindrical components of an
equilibrium magnetic field H, are
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Here Hy, and Hy, are, respectively, the toroidal and
poloidal magnetic field maximums at a given (by r)
magnetic surface. Thus, the module Hy=|Hq of an
equilibrium magnetic field is

Ho(r.0) =yHg +H9(0), @
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Fig. 1. Cylindrical (R,¢, Z) and quasi-toroidal (r,6,¢)
coordinates to describe D-shaped tokamak

To evaluate the transverse susceptibility elements for
cyclotron waves in such plasma we should resolve the
Vlasov equation for the first, 1 =41, harmonics of the
perturbed distribution functions of ions and electrons:

f(t,r,v) =§$ f,°(r, 6,0, u)exp(—iat +ing—ilo), (4)
we use theS standard method of switching to new
variables associated with conservation integrals of
energy, of+v?=const, and magnetic moment,
v’ 12H, = const . Introducing the variables v and g in
velocity space instead of parallel, v, and perpendicular,
v, , components of the particle velocity:

v? 1
om0 90
the kinetic equation for harmonics f*(r,0,0,u), in the

zeroth order over the magnetization parameter, after
averaging over the gyrophase angle in velocity space
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can be reduced to the first order differential equation
with respect to the poloidal angle &
\/ 1-19(0)
1+ Acos? 6+ x cos @sin® @
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where g =éh, /h,, and the variables r, v, u (as well as
R, a, b, g, N, T) appear as the parameters. Here
E, =E, +ilE, is the combination of the normal and

binormal (respectively to Hg) electric field projections,
equilibrium distribution function Fy is maxwellian

2
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with the particle density No, temperature T, charge e,
mass M. The cyclotron frequency of plasma particles is
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Account of centrifugal forces in Eq.(1) is reduced to
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By s=+1 we distinguish the perturbed distribution
functions, f°, of particles with positive and negative
values of the parallel velocity

y = sv,/1-19(0)
relative to Ho.

Describing the wave-particle interaction in elongated
tokamaks we should separate all particles (in the general
case, if A>¢&, Fig2,a) on the three groups of
untrapped, t-trapped and d-trapped particles. Such
separation can be done by inequalities for xzand 6:

(10)

O<u<uy, —w<6<x - untrapped particles,
M, Susy —-6,<60<¢ - t-trapped particles,
m<usuy —6,<0<-6, — d-trapped particles,
m<uluy 0,<60<6, - d-trapped particles,

analyzing the condition v, (x,6) =0. Here

2 A g2
=1-¢-=, =l+e-=, =1+2—, (11
Ly E=5 M E=o M 72 (11)
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and the angels +6, and +6, are the stop points of t- and

d-trapped particles, respectively, on the considered
magnetic surface.
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Fig. 2. Untrapped, t- and d-trapped particles
in the D-shaped tokamaks

However, if A <&, the d-trapped particles are absent
in the D-shaped tokamaks, Fig.2,b. In this more
realistic case, when tokamak has the large aspect ratio,
& <<1; the moderate elongation, A <<1 or roughly
b/a<?2; the small triangularity 6 <<1, the stop points
for the t-trapped particles are:
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To find the perturbed distribution functions( 012

untrapped f*, and t-trapped particles we should resolve

Eqg. (6) using the corresponding boundary conditions:

the periodicity of f* on &, and continuity of f? atthe

stop points +6, ; introducing the new time-like variable
instead of poloidal angle 6 as

(0) = J-\/l-f-/lCOS 7 + K COS 775iN° nd
1-p-9(m)

In this case, the transit-time of u-particles and the
bounce-period of t-trapped particles are proportional to
T, =27¢(x) and T, =47(6,) , respectively.

2. TRANSVERSE SUSCEPTIBILITY

(13)

Knowing f and f, we can calculate the

contribution of u- and t-particles to the 2D transverse
current density components by

i\ (r.0) =Eg<e)3’2§15°u3dux

[t gt ]
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To evaluate the transverse susceptibility elements we
use the Fourier-expansions of the perturbed current

density and electric field components on angle 6 :
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is the new poloidal angle in the coordinate system,
where the equilibrium magnetic field lines are straight.

As a result, the m-th harmonic j™ of the transverse

current density can be calculated by

47
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where %™ and ™ denote the independent

contribution of the untrapped and t-trapped particles of
any kind (electrons or ions) to the transverse

susceptibility elements ™™
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The safety factor gy, introduced in Egs.(21), for the
D-shaped tokamaks with large aspect ratio and small
ellipticity and triangularity (e.i. when ¢ <<1, 1<<1
and & << 1) can be simplified to

gle+0o
q, zq(1+ ( 2 )j.

As was mentioned above these equations describe
the contribution of any kind particles to the transverse
susceptibility elements. The corresponding expressions
for plasma electrons and ions can be received, as usual,
by changing Ty, No, M, e on the parameters of electrons
Toe, Ngey Me, €.<0 and ions Ty, Ngi, M;, €. In order to

obtain the general expressions for ™ and z\™ we

should sum over all kinds of plasma particles.

The expressions (19) and (20) for the transverse
susceptibility elements are written by the summation of
bounce-resonant terms including the double integration

g 2

t_Tt

{ 9(9)

|(6’)I(

1,(0)= f

(21)

(22)

in velocity space, the phase coefficients A™”, B™?
and the resonant denominators:
T, (19,0, —)- {p ng, +1 !, )}V:O (23)
2rurh, T
for the untrapped particles; and
T (10,3, —)-pv =0 (24)
2rurh,

for t-trapped particles.

These wave-particle resonance conditions in
axisymmetric D-shaped tokamaks involve the energetic
characteristics of particles (by the non-dimensional
parameters v =ov/v; and u ), the wave frequency o,

the integer numbers of cyclotron (by 1) and bounce (by
p) resonances.
As for the cyclotron harmonics with high numbers

Il > 2, the resonance conditions in this case will be

coinciding with Eq.(23) and Eq.(24) for the untrapped
and trapped particles, respectively. For the low 1|, as
usual, we have the conditions of the:

- Cherenkov resonance, if 1 =0

- normal ion-cyclotron resonance, if | =1;

- normal electron-cyclotron resonance, if | =-1;
for both the untrapped and t-trapped particles.

Of course, analyzing the wave-particle resonance
conditions in toroidal geometry we should take into
account the phase coefficients A™” and B™” for the
untrapped and t-trapped particles, respectively.

The resonance conditions (23) and (24) are written
for unspecified plasma particles. The corresponding
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resonance conditions for electrons and ions can be
obtained from Eq. (23) and Eq. (24) by the change of
mass M and charge e on M,e, and M,,e,

respectively.
CONCLUSIONS

In conclusion, let us summarized the main results of the
paper.

As is well known, the collisionless wave dissipation
in the frequency range of ICR and ECR can be realized
under the conditions if the plasma particles interact
effectively with the transverse electric field
components, E,+iE,. The bounce-averaged wave-
particle resonance conditions in the frequency range of
the fundamental cyclotron resonances (l=+1) are
presented in Eq. (23) and Eq.(24) for untrapped and t-
trapped particles, respectively.

The specific features of the wave-particle
interactions in the D-shaped tokomaks are due to that i)
the resonance conditions for untrapped and t-trapped
particles are different, and ii) all the harmonics of
E,, = E, £iE, contribute into the m-th harmonic of the

transverse current density component, j{.

The absorbed wave power under the high frequency
plasma heating on the fundamental cyclotron harmonic,

Pe, =05Re(E g, ). (25)
can be estimated by the expression
) +oo +oo - o
Py =22 (Imzly™ +Im 7™ ) x (26)

x[ReE{™ ReE™ + ImE™ IME(™ ].
As was mentioned above, | =1 corresponds to wave
power absorbed under the ICR plasma heating, when

@~ Q. ; and the left-hand polarized waves ( £, +iE, )

interact effectively with the resonant ions. The case
I =—1 should be considered under the ECR plasma
heating when @ ~| Q| and the right-hand polarized

waves ( E, —iE, ) interact with the electrons.

Contribution of untrapped and t-trapped particles to
the imaginary parts of the transverse susceptibility

elements, Im %™ and Im ™, can be estimated by

Eg. (19) and Eq. (20) using the well known Landau
residues method.
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HNOTJIOIIEHUE IIUKJIOTPOHHBIX BOJIH B D-OBPA3HBIX TOKAMAKAX
H.H. I'puwanos, H A. Azapenkos

HonepeqHLIe OJICMCHTBI }II/IBHeKT'pPI‘IeCKOﬁ BOCHIPUHUMYUBOCTHU IJIA PAJUOYACTOTHBIX BOJIH B IUIa3ME aKCUAJIBHO-
CUMMECTPUYHBIX TOKaMaKOB C OOJIBIIIUM ACIIEKTHBIM OTHOLICHHUECM, yMepeHHoﬁ SJUIMITUYHOCTBIO M MaJIor
TPCYTOJIbHOCTBIO MAIrHUTHBIX HOBerHOCTCﬁ D'O6p33HOl"0 CCUCHMUSA IOJTYUYCHBI Ha OCHOBAHHHU PCHICHUSA ypaBHeHI/Iﬁ
Brnacosa JUIA HpOHéTHBIX n t-3anepTHx JacTul B cCllydae, KOrJa TaK Ha3bIBACMbIC d'33H€pTLIG qaCTUulbI
OTCYTCTBYIOT. Ot JAUDJICKTPUYCCKUE XAPAKTCPUCTUKU HNPHUMCHUMBI UL OLCHKU HUKJIOTPOHHOI'O MOITOIICHU
QJICKTPOMArHMTHBIX BOJIH (Haan/IMep, BO BpEMs HarpeBa HJ'IaBMBI) B JUAIIa30HC 4aCTOT HOHHO-HUKJIOTPOHHOI'O UJIN
QJICKTPOHHO-IUKIIOTPOHHOT'O PE30HAHCOB.

MOTJIMHAHHSA HUKJIOTPOHHUX XBUJIb B D-IIOAIBHUX TOKAMAKAX
M.I. I'puwanos, M.O. A3zapenkos

[TomepeuHi eneMeHTH AIENEKTPUIHOI CIPUHHATIMBOCTI ISl PaiO9aCTOTHUX XBHJIb B aKCiaJdbHO-CHUMETPHUYHHUX
TOKaMaKax 3 BEJIMKUM aCTIEKTHUM CITiBBiTHOIICHHSIM, TIOMIPHOI €MiNTHYHOCTHIO Ta MAJO1 TPUKYTHOCTBIO MarHITHAX
nmoBepxoHb D-mofiOHOTO Tepepidy OTpHMaHi depe3 PO3B'SI30K PiBHSAHL BiacoBa mis mposiTHUX Ta t-3amepTux
YAaCTHHOK B yMOBAx KOJHM Tak 3BaHHi (-3amepti uacTHHKH BincyTHi. i HienekTpudHi XapaKTePUCTHKH MArOTh OyTH
3aCTOCOBaHi sl OL[IHKM LMKJIOTPOHHOTO IOTJIMHAHHS EJICKTPOMArHiTHUX XBWIb (HANPHUKIAN, IiJl Yac HArpiBy
I1a3MH) y Iiana3oHi 4acTOT i0HHO-LIUKIOTPOHHOTO a00 eIEKTPOHHO-IUKIOTPOHHOTO PE30HAHCIB.
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