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     The behavior the electromagnetic fields in the vicinity of the lower hybrid resonance point is studied in case of 

1D plasma non-uniformity. The first of two found solutions of Maxwell’s equations is singular and describes the 

wave travelling to the lower hybrid resonance layer. This wave if fully absorbed without reflections. Another 

solution which is regular describes the standing wave. To extend the range of validity of the solutions found, they 

are matched to the WKB solutions. Three possibilities for numerical solving the wave propagation problem in 

presence of the lower hybrid resonance zone are discussed in the paper. 

     PACS: 52.35.Hr 

 

INTRODUCTION 
 

     The upper and lower hybrid resonances (UHR and 

LHR) appear in cold magnetized plasma when the 

perpendicular diagonal component   ee  ˆ  of the 

dielectric tensor ̂  nullifies (here e  is a unitary vector 

perpendicular to the steady magnetic field). In case of 

LHR the WKB solutions predict a regular behavior of 

the fast magnetosonic wave (FMSW). The wave number 

of the slow wave (SW) diverges on approach to the 

LHR layer.  

     The LHR phenomenon is a base for the lower hybrid 

heating and current drive. The mode conversion 

scenario of the minority heating also includes the LHR 

mechanism for the wave absorption. In a standard 

minority heating scenario the LHR appears at the 

plasma periphery, and its role in wave propagation and 

power balance is not yet studied sufficiently.  

     In hot plasma in LHR zone, the slow wave converts 

into ion Bernstein wave. In cases of radio-frequency 

discharge start-up or a wall conditioning discharge the 

ions are cold and the wavelength of ion Bernstein wave 

becomes extremely short. Under such conditions, it is 

expedient to treat LHR without account of wave 

conversion. 

     Presence of the singularity hampers a numerical 

modeling of wave propagation in plasma when a LHR 

exists in the calculation domain. A simplest way to 

proceed is usage of the penalty method in which the 

singularity in the LHR point is avoided by adding 

locally an artificial imaginary part to  . A more 

rigorous option is usage of the analytical solutions in the 

LHR area. The analytical continuation of the Maxwell’s 

equations to the complex plane is the most rigorous 

approach.  

 

SW FIELD STRUCTURE AT LHR VICINITY 

 
     The problem is considered in slab geometry with 

non-uniformity of plasma along the x coordinate. The 

magnetic field is directed along z. Using smallness of 

two parameters 1/,,, 2
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1||    , one can obtain an equation for the 

slow wave [1] from Maxwell’s equations: 
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propagating wave the WKB solution of this equation is 
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Here and further the constants are denoted by C. Note 

here that 
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approach to LHR point all components of the electric 

field increase. In the vicinity of LHR the above equation 

is approximated by 

0
2

2

 y
x

a
y

dx

d
,                                                (3) 

where xEy  , 

0

2

||

/


 


x

z

x

k
a




. Here it is assumed 

that the the LHR point is at x=0. Making substitution 

xs   and syv / , one can come to the Bessel 

equation for v.  
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The approximate solution of this equation is  
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where axu  , 111 YCJCZ YJ   for u>0. If u<0 then 

111 KCICZ KI  . To match the solutions, the 

expansions of the solutions near the matching point, 

u=0, is made. Then  
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Here γ = 0.57722 is Euler-Mascheroni constant. 

Continuation of expression for )1(

xE  to x=-0 results in 

addition of imaginary unity due to logarithm. Addition 

of )2(

xiE  to the first solution compensates this. Finally 
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Other components are  dxEikE xyy  and 

 dxEikE xzz .  
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The first solution has a logarithmic singularity that 

indicates on residual wave damping. This is confirmed 

by global behavior of the solution: At u>0 it describes a 

wave traveling from infinity to the point u=0. There is 

no reflected wave and, therefore, there is non-zero 

valued energy flux of negative sign (see also [2, 3]). At 

u<0 the solution represents a standing wave with zero 

energy flux. This means that the power is absorbed 

locally at the LHR point.  

     It is necessary to note that a more general problem is 

analyzed in Ref. 4. The authors obtain the solution in 

integral form which possibly may be reduced to the 

explicit form given here. Also Ref. 5 should be 

mentioned in this context. 

 

VIDENING OF ZONE OF SW SOLUTION 

VALIDITY 

 
     The solutions found (8)-(11) are valid in a narrow 

zone |x|<<L. Here L is the characteristic scale of 

variation of the dielectric tensor components. Beyond 

this zone the WKB approximation comes to play. 

Within it, the electromagnetic field structure is given by 

formula (2) and the following formulas 
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To match the solution (8-11) with the WKB solution 

(2), (12), (13) which, in contrast to the analytical 

solution, accounts for not only single term in Laurent 

expansion of 2

swk  over x, the solution (8)-(11) is 

modified so that its asymptotical behavior coincides 

with the WKB solution, but the accuracy approximation 

in the vicinity of the LHR point remains in the same 

frame as before. In general, the modification consists in 

replacing of the argument x by x+o(x) and any constant 

C by C+O(x). This procedure can be justified by a 

representation of transition from equation (1) to 

equation (3) as application of a similar procedure 

instead of omission of some small terms. Following this, 

the Bessel function arguments in (8-11) is substituted 

with  
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The modified solution can be represented in the form: 
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The obtained solutions at |x|<<1 behave similarly to 

above obtained analytical solution (note, that they have 

different amplitude). At WKB zone, they repeat WKB 

solutions. For high enough |kz|, the vicinity of LHR and 



 

46                                                                                                                                                                   ISSN 1562-6016. ВАНТ. 2016. №6(106) 

WKB zones overlap, and the above solutions are valid 

everywhere. 

 

FMSW FIELD STRUCTURE  

 
     The equation for FMSW can be obtained from the 

Maxwell’s equations neglecting Ez. It can be written in 

the following self-conjugate form: 
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As mentioned before, the LHR point is a regular point 

for FMSW. If the LHR zone is narrow, the polynomial 

representation of the FMSW field is quite accurate. To 

find it, the Taylor expansion for the coefficients A and B 

should be made. To lowest order, the couple of the basic 

solutions is: 
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The x component of the electric field could be then 

found from the x component of Maxwell’s equations. 

 

NUMERICAL TREATMENT OF LHR  

 
     Numerical modeling that uses discretization with 

finite difference or finite element methods is hampered 

by singularities at LHR location. The matrix of the 

linear equations system which is produced by the 

discretization may be ill-conditioned. Even well-

conditioned matrix may produce wrong results since the 

singularity cannot be reproduced by polynomial or other 

smooth functions.  

     The singularity disappears in natural way if the 

dissipative effects, such as binary collisions, are 

accounted for in the dielectric tensor. However, if the 

collision frequency is much less than the radio-

frequency, too fine mesh is necessary to reproduce the 

electric fields. 

     One of the methods to fix the singularity is the 

penalty method which consists in adding an artificial 

imaginary part to   that covers the LHR vicinity only 

(see Ref. 1). The method is quite practical, but its 

apparent disadvantage is that it could result in some 

inaccuracy in the solution.  

Another approach could be realized using the analytical 

solutions in the LHR zone. The solutions presented in 

preceding sections of the paper could be used and 

matched with the numerical solutions at the left and 

right margin of the LHR zone. This approach is more 

complicated than the penalty method both in 

programming and in amount of the calculations, but the 

accuracy expected should be higher. However, the 

accuracy of the calculations has an upper limit 

determined by the accuracy of the approximate 

analytical solutions.  

     A prospective method for treating LHR is the 

method of the analytical continuation. Following this 

algorithm, the coordinate x is extended to the complex 

plane. All quantities and functions in Maxwell’s 

equations are assumed to be analytical. The path of 

integration is chosen so that it circumvents the LHR 

point. In this way the singularity is avoided. The method 

has an advantage of numerical convergence that is 

provided by application of discretization at the whole 

domain. This method is tested in the section below. 
 

APPLICATION OF ANALYTICAL 

CONTINUATION TO MAXWELL’S 

EQUATIONS  
 

     Analytical continuation is implemented at 1D 

cylindrical code [6] to the radial coordinate. The 

coordinate is modified to r*=r+iu. In the numerical 

experiments 222

0 ]/)(1[ LrrLCu ac   at the segment 

L-r0<r<L+r0 and zero outside it. The plot of the 

modified radial coordinate is given in Fig. 1.  

 

 
Fig. 1. Modified radial coordinate 

 

 
Fig. 2. The relative error in electric fields at the area 

where the integration contour is at real axis compared 

with the calculation without analytical continuation. 

The curve ‘penalty’ corresponds to applying the penalty 

method in the area 
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     In the particular case under consideration the 

excursion of r* to the complex plane is local and made 

around the regular point (no LHR point in the domain). 

The solution at the area where the excursion is made 

should depend on the integration path. But outside this 

area the solution should be independent on which 

excursion was made, and this is the point to check.  

     Fig. 2 shows the relative difference in electric fields 

at the area where the integration contour is at real axis 

compared with the calculation without analytical 

continuation. The difference quickly goes to zero when 

making the mesh denser. This calculation demonstrates 

applicability of the analytical continuation to the wave 

propagation problems.  

 

CONCLUSIONS 
 

     The behavior the electromagnetic fields in the 

vicinity of the LHR point is studied in case of 1D 

plasma non-uniformity. Analytical solutions for slow 

wave are found in the LHR vicinity. The first of two 

solutions is singular and describes the wave travelling to 

the LHR layer. This wave if fully absorbed without 

reflections. Another solution which is regular describes 

the standing wave. To extend the range of validity of the 

solutions found, they are matched to the WKB 

solutions. The fast magnetosonic wave has no 

singularities in the LHR zone and could described with 

polynomials.  

     Presence of the singularity hampers a numerical 

modeling of wave propagation in plasma when a LHR 

exists in the calculation domain. A simplest way to 

proceed is usage of the penalty method in which the 

singularity in the LHR point is avoided by adding 

locally an artificial imaginary part to  . A more 

rigorous option is usage of the analytical solutions in the 

LHR area. For the slow and fast waves, the above 

obtained solutions may be used. The analytical 

continuation of the Maxwell’s equations to the complex 

plane is the most rigorous approach, and its applicability 

is checked using a numerical example.  
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НИЖНИЙ ГИБРИДНЫЙ РЕЗОНАНС: СТРУКТУРА ПОЛЕЙ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ 

В.Е. Моисеенко, T. Wauters, A. Lyssoivan 

     Поведение электромагнитных полей в непосредственной близости от нижнего гибридного резонанса 

изучено в случае одномерной неоднородности плазмы. Первое из двух найденных решений уравнений 

Максвелла сингулярно и описывает волну, падающую на слой нижнего гибридного резонанса. Эта волна 

полностью поглощается без отражений. Другое решение, которое регулярно, описывает стоячую волну. 

Чтобы расширить область применимости найденных решений, они приведены к виду ВКБ-решений. 

Обсуждаются три возможности для численного решения задачи распространения волн в присутствии зоны 

нижнего гибридного резонанса. 

 

НИЖНІЙ ГІБРИДНИЙ РЕЗОНАНС: СТРУКТУРА ПОЛІВ І ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ 

В.Є. Моісeєнко, T. Wauters, A. Lyssoivan 

     Поведінка електромагнітних полів в безпосередній близькості від нижнього гібридного резонансу 

вивчено в разі одновимірної неоднорідності плазми. Перше з двох знайдених рішень рівнянь Максвелла 

сингулярно і описує хвилю, що падає на шар нижнього гібридного резонансу. Ця хвиля повністю 

поглинається без відбиття. Інше рішення, яке регулярно, описує стоячу хвилю. Щоб розширити область 

застосовності знайдених рішень, вони приведені до вигляду ВКБ-рішень. Обговорюються три можливості 

для чисельного рішення задачі поширення хвиль у присутності зони нижнього гібридного резонансу. 


