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Abstract. In this work we have studied the dynamics of switch-on and switch-off processes in
biased MQW structures where every well shows optical bistability in a light intensity range (I

l 
,I

h
).

We have analyzed in detail MQW structures with negligible inter-well transport. We have found
that the switch-on mechanism consists of a time sequence where every QW jumps into the high-
absorption state. Therefore a step-like switching wave propagates through the structure. The switch-
off process resembles a reverse wave propagating in the opposite direction and step-like processes
in the plasma concentration decay. These effects can be used for conversion of an analog optical
signal to digital (optical and electrical) signal(s).
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There are many quantum well heterostructures that show
bistable electro-optical absorption: multiple quantum
well heterostructures placed into the intrinsic region of a
p-i-n diode connected to an electric circuit with a series
resistor (Self Electro-optic Effect Devices, SEEDs) [1�
4]; similar structures with an open circuit [5, 6]; multiple
quantum well structures placed between charged
capacitor plates [7�9]; staked asymmetric double and
triple QWs [10], and others [11]. The bistable absorption
arises due to the screening of the applied field by the
photo-generated electrons and holes, which produces
considerable changes in the optical spectra near the
fundamental edge of absorption. These spectra become
dependent on the concentration of the electron-hole
plasma, i.e., on the intensity of the illumination. If the
spectrum of the illuminating light is tuned into the region
between exciton and interband absorption, the light
absorption becomes bistable; i.e. for a given range of
incident light intensities both, low absorption (LA) state
with low plasma concentration, and high absorption
(LA) state with large plasma concentration can exist.

In these systems the dynamics of the switching
processes between bistable states involves different
physical processes: generation of excitons associated with
the two-dimensional electron and hole subbands, fast
exchange between exciton and electron-hole states, intra-

well separation of electrons and holes, changes in their
wave functions, and inter-well transport. Understanding
these processes and their manifestation in optics is
important for both, physics and its applications. In this
work we study the dynamics of switch-on and -off
processes in a voltage biased MQW structure without
inter-well electron transfer, i.e., with an independent
balance of the photo-excited plasma concentration for
every QW. Electro-optical bistability in such structures
was investigated in papers [7�9] under quasi-stationary
conditions.

A model describing switching processes in optically
bistable MQW structures should include a self-consistent
calculation of electron-hole states in the wells (parti-
cularly subband energies, E

e
, E

h
, and wave functions, Ψ

e
,

Ψ
h
), the absorption factor A, and exciton and plasma

concentrations (N). Two groups of characteristic time
scales are important for the dynamics of switching. The
first group comprises faster processes with characteristic
quantum mechanical times pe EE hh , , and exchange
times between exciton and electron-hole states, τ

ex
. The

second group of time scales is related to the generation
and recombination of the photo-generated carriers.These
time scales can be estimated as N

ch
/AI and τ

R
, where N

ch

is a characteristic plasma concentration, I is a typical
light intensity, and τ

R
 is the recombination time. The time
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scales in the first group are considerably smaller than those
in the second group. Then the dynamics of the system can
be described by means of electron-hole states calculated at
instantaneous plasma concentration N(t). This results in an
exciton energy E

ex
, which follows the position of the elec-

tron and hole subbands, and an absorption factor adiabati-
cally dependent on N(t). This approach is valid for light
pulses with a duration of a few picoseconds or longer.

Let us consider a MQW structure biased by an electric
field and illuminated from below, as illustrated in fig. 1.
The QWs have width 2d, and are grown vertically along
the ς axis (ς is expressed in units of d). Introducing the
characteristic energy 22

0 2mdE h= , we will measure
subband energies and potential energies in these units,
while the electric field is in units of ε

0 
= E

0
/ed. The

dimensionless electron and hole concentrations (n) are
in units of N

0
 = κE

0
/e2d, κ being the dielectric permi-

tivity.The kth QW (k = 1� Nω, Nω is the total number of
QWs) can be described by its dimensionless electron and
hole wave functions ψ ψe hk k

, ,  subband electron and hole
energies εek

 and εhk
 (only the lowest subbands are

supposed to be populated), and concentration of the
photo-excited electron-hole plasma (supposedly quasi-
neutral) n

k
. We also assume that electrons and holes have

equal effective masses for simplicity. According to the
above discussion, the wave functions and energies of the
kth QW can be found from the self-consistent Schrodin-
ger-Poisson equation at a given plasma concentration n

k

0)(2

2

=−++ ψζυε
ζ
ψ

q
d

d
kk

k
,

ψ
k
(±1) = 0, ∫−

=
1

1

2
1);( ζζψ kk n ,          (1)

where q is the dimensionless applied electric field, and the
dimensionless electrostatic energy is

21

1

/// );(),();( ∫−
= kkkkk nKnn ζψζζζζυ ,          (2)

( )///

2

1
),( ζζζζζζ +−−≡K .

The electrostatic energy and the wave functions have the
following symmetry properties: υ

k
(ζ; n

k
) = -υ

k
(-ζ; n

k
), and

ψ ek
(-ζ; n

k
) = ψ hk

(-ζ; n
k
) = ψ

k
(ζ; n

k
). The eigenvalue ε

k

depends parametrically on n
k
. We have found solutions

of equation (1) by means of a variational method. The
energy ε

k
 as a function of n

k
 for a particular value of the

electric field q is presented in fig. 2(a). Parameters used
in the calculations are given in table. The increase in the
electron and hole energies with carrier concentration
arises, obviously, from the screening of the applied field.

In case of deep QWs and large exciton radius, the

Fig. 1. Scheme of a MQW heterostructure illuminated by an inci-
dent light of intensity I

0
 and biased by an electric field E.

Fig. 2. Steady state characteristics of individual QWs. (a) shows
the renormalized energy ε  (scale on top of the figure) as function
of the plasma concentration n (left axis), and bistable
characteristic curve n (I): plasma concentration as function of
the incident light intensity I (left and bottom axis). (b) shows
the hysteresis in the transmitted light through a single QW.
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exciton energy E
ex

 follows the position of the electron and
hole subbands. Assuming a Lorentz shape for the absorp-
tion factor as function of the photon energy ωh , we can
write:

( )ω
ε

ω

,,

)),((
),,( 22

2

qnaA

qn

A
qnA

km

kk

m
k

≡

≡
Λ+∆−

Λ=
,         (3)

where A
m
 is the maximum absorption factor,

02/)( EEE gex −+=∆ ωh  is the detunning of the photon
energy, and Λ is the dimensionless bandwidth in units of
2E

0
.
We can describe the MQW structure in the case of

independent concentration balance for each QW by the
following equations:

),,,(

),,(

1

1

−

−

≡

≡−=

kk

kkk
k

IqnR

nIqna
dt

dn

ω

ω
,         (4)

ωω NkIqnaAI kkmk ...1,)),,(1( 1 =−= − .         (5)

Here we assume a linear recombination rate. t is
measured in units of the recombination time τ

R
. For some

particular parameters ω and q, the stationary dependence
n(I) is presented in fig. 2. I

k-1
 is the illuminating kth-QW

layer intensity in units I
0
 = N

0
/τ

R
A

m
. Thus, I

0
(t) is the

incident light intensity. The instant relationship (4)
between I

k
(t) and I

k-1
(t) requires the condition

d

ac

dt

dI

tI
Rk

k 2

)1(

)(

1 τ−−<< , c being the velocity of light.

This relation holds for pulses with a duration of a few
picoseconds or longer. For a given I

0
(t), and an initial

concentration in every well n
k
(0), the system of equations

(1) and (2) defines completely the dynamic problem for
the MQW structure.

Table. Numerical values used for calculation.

 Parameter Value

 E
0
 (meV) 5.6

ε
0
 (kV/cm) 5.6

 N
0
 (cm-2)        4.0 × 1010

 I
0
/�ω (photons/cm2s)        8.1 × 1021

Let us consider the steady state condition. For this
case, the equation

R(n
k
,q,w,I

k-1
) = 0         (6)

gives the possible solutions for the kth QW. It is easy to

see that for the absorption factor of (6) there are three
branches of uniform solutions n

k 
= n

k
(I, q) at some intervals

of intensities I and fields q: the low absorption branch [low
concentration n

L
(I)], the high absorption branch [high con-

centration n
H
(I)] and the middle branch (which is unstable).

In fig. 2(b) we present these branches calculated for an indi-
vidual QW for the particular parameter values of table. The
bistable regime occurs in the interval I

l 
< I < I

h
. The light

intensity transmitted through the kth QW layer shows hys-
teresis, as depicted in fig. 2(b).

Using these solutions for an individual QW, we can eas-
ily construct possible steady states for the whole MQW
structure. If the incident intensity  I

0
 is less than the value

I
l
, the MQW structure is entirely in the LA state. If

I
l
 < I

0
< I

h
, the whole structure can be in the LA state, or

some of the QWs adjacent to the illuminated face can
switch to the HA state. At I

0
 > I

h
 the very first QW layers

are certainly in the HA state, while the rest of wells can
be in the LA state. In fig. 3 the intensities I

k
 as function

of the index k are presented for a 24-QW structure at
I

0 
= 1.25 × I

h
. The first seven QWs are always in the HA

state and the intensity decreases fast across this region of
the structure. The QWs with k from 8 to 20 can be in
both states. The QWs with k > 20 are always in the LA
state. This results in thirteen possible stationary states of
the MQW structure. Three of these possible states are shown

Fig. 3. Distribution of intensities across the MQW structure. Po-
sitions of individual QWs are indicated. (a) corresponds to an
incident light I

0 
= 1.25I

h
. Three of the possible thirteen steady

states described in the text are shown. Triangles correspond to
the case (i), circles correspond to the case (ii) and squares
correspond to the case (iii). (b) shows the stationary situation
when I

0
 = 2I

h
. All the wells are in the HA state.
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in the fig. 3(a): (i) seven QWs in the HA state and the rest in
the LA state, (ii) eight QWs in the HA state and the rest in
the LA state, and (iii) the wells with
k = 1�20 are in the HA state, while the rest are in the
LA state. The larger is the intensity of the incident light,
I

0
, the larger will be the number of QWs switched to the

HA state. There is a critical value of the incident light
intensity ∗

0I , dependent on the number of QWs of the
structure, such that if  I

0 
≥ ∗

0I , all the wells are switched
to the HA state. Fig. 3(b) depicts such a case for a 24-
QW structure when I

0 
= 2I

h
. Thus, the bistability of the

optical absorption in a single QW, generally leads to
multistability in the MQW structure. Which particular
state occurs depends on the prehistory, i.e., on the time-
dependence of the incident intensity, I

0
(t),during the

build-up of the stationary value 1.
Let us go back to the dynamical problem and consider

a time-dependent intensity of the incident light. We
introduce the characteristic time scale of the build-up of
the stationary light intensity value τ

in
, so that







= tII

in

R

τ
τ

. If

1<<≡
in

R

τ
τ

β ,         (7)

we can perform a perturbative analysis. Let us rescale
(3) introducing the new time variable: t t≡ β . Then we
obtain that this equation can be rewritten as:

( )1

1

,,,

),,(

−

−

≡

≡−=

kk

kkk
k

IqnR

nIqna
td

dn

ω

ωβ
.         (8)

Under condition (2), we can apply the boundary layer
singular perturbation method to solve (8) (see, for
example [12]). According to this method, the solution
evolves smoothly over time intervals which last periods

( )t O≡ 1 separated by sharp transitions lasting times
( )t O≡ β . Outer solutions evolving on the long time scale

t  can be found by treating the term multiplied by the
small parameter β as a perturbation:

( ) ( ) ( ) ( )n t n t n t Ok k k l= + +, ,0
2β β .          (9)

Here the leading term ( )n tk ,0 coincides with one of the two
branches of the solutions of (6), n

L 
(I), n

H 
(I), with t -depend-

ent I = I
k-1

. The first correction to the outer solution is deter-
mined by

( )
( )

( )
)(

1
)(

1

0,
1

2

1
0,

0,

1,

k
k

k
k

k

k

na
td

tdI

tI
n

na
tn

−

−

×

×











−

∂
∂

−=

.        (10)

If the leading term lies on the low concentration

branch, ( )[ ]n n I tk L k,0 1= − , hk II ≤−1 , the first correction

is small everywhere except in a vicinity of t tk h= , , where

( )I t Ik k h h− =1 ,  at ( )I t
tk h−

>
1

0
,

. As t tk h→ ,  the denomi-

nator term in (10) goes to zero. Similarly, when the
leading term lies on the high concentration branch,

( )[ ]n n I tk H k,0 1= − , lk II ≤−1  the first correction is small

everywhere, except in a vicinity of lktt ,= , with

( )I t Ik k l l− =1 , , ( )I t
tk l−

<
1

0
,

. For increasing ( )I tk −1  near

t tk h= , , and for decreasing ( )I tk −1  near t tk l= , , the

jumps between low concentration and high concentration
solutions are described by inner solutions on the fast time
scale t. To find the latter solutions we can keep

( )I t Ik h− =1  or ( )I t Ik h l, = in (8) at t tk h= ,  and, t tk l= ,

respectively. Then, the inner solutions are responsible for
the process of fast switching between low and high
concentration states. They have the form:

∫
−

±=
−−

n

lnh

lhk

lhk

tt

nIna

n
,

,,

,,1)( β ,        (11)

where n
h
 = n

H 
(I

h
), n

l
 = n

L 
(I

l
). The sign «+» corresponds

to the inner solution determining switching from the low
concentration to the high concentration branches at
I

k-1 
≈ I

h
, while the sign «�» is for the inner solution joining

high concentration to low concentration branches at
I

k-1 
≈ I

l
.

Now we obtain the evolution of the photo-excited
plasma in the kth QW as follows. If the intensity of the
light reaching this well, I

k-1
, increases from zero, the well

is in the low absorption state with plasma concentration

( )[ ]n n I tL k= −1  until t tk h= , . In a vicinity of t k h,  a fast

switch-on process to the high absorption state with

( )[ ]n n I tH k= −1  occurs according to (11). A further increase

in the intensity leads to an increase in the plasma

1 If carriers may hop between QWs, the steady state distribu-
tion is, in principle, determined by this transfer. Let t

int
 be the

characteristic time of the inter-well transport. A suppressed inter-

well carrier transfer means τ τR int <<1 . Thus, the results of our

analysis are valid for 
int

1

τ
τ R

td

dI

I
>> . If the latter inequality is not

satisfied, the results are valid for times t R<< τ τint .
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concentration and the absorption in accordance with the
high absorption branch. If the intensity reaches a maxi-
mum and then decreases, the kth QW remains in this

state up to time t tk l≈ , , when a fast switch-off process

(described by (11)) to the low absorption state occurs.
As a result we have dynamic hysteresis for the kth QW.
To be switched-on, the kth QW should accumulate plasma
concentration up to n

h
. The necessary time is estimated

as ( ) hlhon nnnt /−≈∆ β .The switch-off process occurs in

a time β≈∆ offt . Important characteristics are the

changes in the intensity I
k-1

 during these fast stages. These
changes are of the order of

h
l

lh

t
on

on
k I

n

nn

td

dI
tI

hk

−≈




∆≈∆ − β

,

1 ,

l
t

off
off
k I

dt

dI
tI

lk

β≈




∆≈∆ −

,

1 .

Let us suppose that on
kI 1−∆ and off

kI 1−∆  are small in
comparison with the steady state attenuation in a single
QW, a(n

k
)I

l,h
. These conditions can be rewritten as

aa
n

nn

h

lh <<<<
−

ββ , .       (12)

If inequalities (12) are fulfilled, the times at which
different QWs switch are well separated. Indeed, accord-
ing to the above analysis, at the time t h1,  when the very
first QW switches to the HA state, the adjacent QWs
follow adiabatically the intensity I

1
. At t2 , the second

QW switches-on, but the following QWs with k > 2 still
follow adiabatically the intensity I

2
, and so on. Thus we

find that the MQW structure switches on sequentially
as the intensity of light increases.

The reverse process � switch-off of the structure �
occurs similarly. It starts when the intensity of light at
the last QW in the HA state reaches the value I

l
. Then a

step-like «switch-off»  wave propagates towards the first
QW.

The step-like propagation of a «switch-on» wave
through the structure was also found by direct numerical
simulations. The results were obtained for a MQW
structure with Nω = 24 illuminated by an incident light
of intensity

( ))exp1()(0 tItI s β−−= .                   (13)

In fig. 4 we present numerical results for I
s 
= 1.25 × I

h

and β  = 0.1. The intensities I
k-1

 are shown as functions
of t for k = 1�8. Nonmonotonic and sawtooth-like
I

k-1
(t) (k = 2�8) are due to the step-like switch-on of the

QWs. In fig. 4(b), the concentrations n
k
(t) of the first nine

QWs are shown. We clearly see that seven QWs switch in
succesion to the HA state at different times, while the other
QWs remain in the LA state. As t → ∞ the input intensity

saturates and the structure evolves to the steady state dis-
tribution presented in case (i) of fig. 3(a).

The step-like character of the switching process
obtained above in the limiting case (7) occurs also when
β  ~ 1. This is illustrated by the numerical simulations
presented in fig. 5 for a I

0
(t) given by (12) with I

s 
= 1.25 × I

h

and β  =  1. As t → ∞ illumination with such an intensity
results in a steady state distribution with eight QWs in
the HA state (see case (ii) of fig. 3(a)).

Increasing the light intensity leads to a larger number
of QWs switching to the HA state. In fig. 6 we present
simulation results for an incident intensity given by (13)
with I

s 
= 2 × I

h
 and β = 0.1. From this figure we can see

that the step-like switching process now involves all the
QWs. For this intensity the final distribution corresponds
to the steady state presented in fig. 3(b). It is interesting
to note that the output intensity is close to the value I

h
.

For a pulse illumination with a maximal intensity
above I

h
 both processes � switch-on and switch-off - take

place. Using a gaussian pulse:

2)(
max0 )( teItI β−=       (14)

we found step-like switch-on and switch-off waves. In fig. 7
we plot calculations of the transmitted intensity I

out
, as a

function of the incident light intensity I
0
. The results were

obtained for I
max 

= 1.25 × I
h
 and β = 0.1. Instead of a smooth

Fig. 4. Dynamics of the MQW structure illuminated by the light
intensity given by (12) 1at I

s
 = 1.25 × I

h
 and β  =  0.1. The critical

intensity values I
l
 and I

h
 are shown. (a) shows the incident inten-

sity, I
0
(t),  and the intensities illuminating the first eight QWs and

the transmitted intensity (the lower curve). (b) shows the plasma
concentration  for the same wells. The first seven QWs are switched
to the HA state.
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Fig. 7. Output versus input intensity for the pulse given by (14).

hysteresis loop, we find one with a fine structure correspond-
ing to the switch-on and switch-off processes.

It is interesting to recall that optical bistability with in-
creasing absorption occurs also in bulk-like semiconductors.
Different mechanisms underlying this type of bistability and
different spatio-temporal patterns have been studied in [13�
16]. For such systems, it has been found [17, 18] that if the
diffusion of the photogenerated carriers is suppressed,
switch-on and -off processes occur in a step-like propagat-
ing wave, which is quite similar to the above discussed re-
sults.

In conclusion, we have studied the dynamics of MQW
structures under bistable electro-optical absorption. We
have formulated a model self-consistently describing the
electron and hole wave functions and energies, and the
processes of absorption, generation of the plasma and
intra-well relaxation. The inter-well transfer has been
supposed to be negligible. Under these conditions, steady
state distributions of the intensity and plasma concen-
tration are multistable. For time-dependent incident
intensities we have found that switching processes between
possible states of the structure occur as a result of sequen-
tial step-like switching of individual QWs. This leads to a
characteristic behavior of the transmitted intensity and in-
put-output dependencies. It is worth to notice that due to

Fig. 6. Same situation as of figures 4 and 5 with  I
s 
= 2 × I

h
 and β 

= 0.1. All the wells are switched to the HA state. Only wells with
an odd index are shown.

Fig. 5. Same situation as of fig. 4 with β = 1. Eight QWs are
switched to the HA state at τ  → ∞.
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step-like switching we can use these MQW structures for
the conversion of an analog optical signal to digital (optical
and electrical) signal(s).
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ÄÈÍÀÌ²ÊÀ ÂÊËÞ×ÅÍÍß ÒÀ ÂÈÊËÞ×ÅÍÍß ÁÊß ÑÒÐÓÊÒÓÐ Ç Á²ÑÒÀÁ²ËÜÍÈÌ ÅËÅÊÒÐÎÎÏÒÈ×ÍÈÌ
ÏÎÃËÈÍÀÍÍßÌ.

Â. Î. Êî÷åëàï
²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè

Ë. Ë. Áîí³ëëà, Ê. À. Âåëàñêî
Ìàäðèäñüêèé óí³âåðñèòåò ³ì. Êàðëîñà III, ²ñïàí³ÿ

Ðåçþìå. Â ðîáîò³ äîñë³äæåíà äèíàì³êà âêëþ÷åííÿ-âèêëþ÷åííÿ ó íåñèìåòðè÷íèõ (çì³ùåííèõ) ÁÊß ñòðóêòóðàõ, äå êîæíà
ÿìà ïîêàçóº îïòè÷íó á³ñòàá³ëüí³ñòü ó îáëàñò³ ³íòåíñèâíîñòåé ñâ³òëà ( I

l
, I

h
). Äåòàëüíî ïðîàíàë³çîâàíî ÁÊß ñòðóêòóðè ç

íåçíà÷íèì ïåðåíîñîì ì³æ ÿìàìè. Çíàéäåíî, ùî ìåõàí³çì âêëþ÷åííÿ ñêëàäàºòüñÿ ç ÷àñîâî¿ ïîñë³äîâíîñò³ , êîëè êîæíà
êâàíòîâà ÿìà (Êß) ïåðåõîäèòü â ñèëüíîïîãëèíàþ÷èé ñòàí. Òàêèì  ÷èíîì, â ñòðóêòóð³ ðîçïîâñþäæóºòüñÿ ñòóï³í÷àòà
õâèëÿ. Ïðîöåññ âèêëþ÷åííÿ íàãàäóº çâîðîòíþ õâèëþ, ÿêà ðîçïîâñþäæóºòüñÿ â ïðîòèëåæíîìó íàïðÿìêó è ñòóï³í÷àòè
ïðîöåñè ó ñïàä³ êîíöåíòðàö³¿ ïëàçìè. Ö³ åôåêòè ìîæóòü áóòè âèêîðèñòàí³ äëÿ ïåðåòâîðåííÿ àíàëîâîãî îïòè÷íîãî ñèãíàëó
ó öèôðîâèé (îïòè÷íèé òà åëåêòðè÷íèé).

ÄÈÍÀÌÈÊÀ ÂÊËÞ×ÅÍÈß È ÂÛÊËÞ×ÅÍÈß ÌÊß ÑÒÐÓÊÒÓÐ Ñ ÁÈÑÒÀÁÈËÜÍÛÌ
ÝËÅÊÒÐÎÎÏÒÈ×ÅÑÊÈÌ ÏÎÃËÎÙÅÍÈÅÌ.

Â. À. Êî÷åëàï
Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû

 Ë. Ë. Áîíèëëà, Ê. À. Âåëàñêî
Ìàäðèäñêèé óíèâåðñèòåò èì. Êàðëîñà III, Èñïàíèÿ

Ðåçþìå. Â íàñòîÿùåé ðàáîòå èññëåäîâàíà äèíàìèêà âêëþ÷åíèÿ-âûêëþ÷åíèÿ â íåñèììåòðè÷íûõ (ñìåùåííûõ)  ÌÊß
ñòðóêòóðàõ ãäå êàæäàÿ ÿìà îáíàðóæèâàåò îïòè÷åñêóþ áèñòàáèëüíîñòü â îáëàñòè èíòåíñèâíîñòåé ñâåòà ( I

l
, I

h
). Äåòàëüíî

ïðîàíàëèçèðîâàíû ÌÊß ñòðóêòóðû ñ íåçíà÷èòåëüíûì ïåðåíîñîì ìåæäó ÿìàìè. Îáíàðóæåíî, ÷òî ìåõàíèçì âêëþ÷åíèÿ
ñîñòîèò èç âðåìåííîé ïîñëåäîâàòåëüíîñòè, êîãäà êàæäàÿ êâàíòîâàÿ ÿìà (Êß) ïåðåõîäèò  â ñèëüíîïîãëîùàþùåå ñîñòîÿíèå.
Òàêèì îáðàçîì, â ñòðóêòóðå ðàñïðîñòðàíÿåòñÿ ñòóïåí÷àòàÿ âîëíà. Ïðîöåññ âûêëþ÷åíèÿ íàïîìèíàåò îáðàòíóþ âîëíó,
ðàñïðîñòðàíÿþùóþñÿ â ïðîòèâîïîëîæíîì íàïðàâëåíèè è ñòóïåí÷àòûå ïðîöåññû â ñïàäå êîíöåíòðàöèè ïëàçìû. Ýòè
ýôôåêòû ìîãóò áûòü èñïîëüçîâàíû äëÿ ïðåîáðàçîâàíèÿ àíàëîãîâîãî îïòè÷åñêîãî ñèãíàëà â öèôðîâîé (îïòè÷åñêèé è
ýëåêòðè÷åñêèé).


