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LEARNING REDUCED MODELS FOR MOTION ESTIMATION  
ON OCEAN SATELLITE IMAGES 

 
The paper describes a learning method on sliding windows for estimating apparent 

motion on long temporal satellite sequences acquired over oceans. A «full model», which is 
defined on the pixel grid, is chosen to describe the dynamics of motion fields and images, 
based on heuristics of divergence-free motion and advection of image brightness by the 
velocity. The image sequence is split into small temporal windows that half overlap in time. 
Image assimilation in the full model is applied on the first window to retrieve its motion field. 
This makes it possible to define subspaces of motion fields and images and a «reduced model» 
is defined by applying the Galerkin projection of the full model on these subspaces. Data 
assimilation in the reduced model is applied on this second window. The process is iterated for 
the next window until the end of the whole image sequence. Each reduced model is then 
learned from the previous one. The main advantage of the approach is the small computational 
requirements of the assimilation in the reduced models that make it feasible to process in 
quasi-real time image acquisitions. Twin experiments have been designed to quantify the full 
model and the learning method on sliding windows and demonstrate the quality of the motion 
fields estimated by the approach. 

KEYWORDS: Motion Estimation, Data Assimilation, Model Reduction, Galerkin 
projection  

1. Introduction 
Motion estimation from an image sequence has been intensively studied since 

the beginning of image processing [1, 2]. The aim is to retrieve the velocity field 

),( txw  visualised by a discrete image sequence Z=zzZ=z
z tx,I=I=I …… 11 )( }{}{ . 

The application of data assimilation techniques to motion estimation also 
emerged a few years ago [3 – 5]. In the case of motion estimation, these 
techniques aim to find the optimal solution to the equations describing the 
temporal evolution of motion fields and images and to the observation equation, 
which links the motion field to the observed image data. Their major drawbacks 
are the memory and computer resources required that do not allow to process 
long temporal sequences of large size images. To get round this problem, 
reduction methods are required to apply the data assimilation on subspaces. In [6] 
such reduced model has been proposed. Coefficients characterizing image 
observations in the image subspace are assimilated in the reduced model to 
estimate those characterizing the motion field.  
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In this paper, we focus on the estimation of motion on long temporal 
windows of satellite images acquired over oceans. The image sequence is split 
into small windows that half overlap in time. A «full model» is chosen in order to 
approximately describe the dynamics of motion fields and images. Image 
assimilation in the full model is applied on the first window to retrieve its motion 
field. A learning process is designed that defines a «reduced model» from the full 
model in the second window. This learning defines the subspaces used to 
characterize motion and images and applies the Galerkin projection of the full 
model on these subspaces. Data assimilation in the reduced model is then applied 
for this second window. The learning method is iterated on the next window until 
the whole image sequence has been processed.  

The paper describes the two main components of the learning method on 
sliding windows: the full model and its image assimilation process, the learning 
of reduced models and their data assimilation systems.  

Oceans are incompressible fluids and the 2D incompressible hypothesis still 
remains a good approximation for image sequences if no or small vertical motion 
occurs (no upwelling or downwelling). If the motion field is divergence-free 
( 0)( =wdiv ), it is then only characterized by its vorticity ξ , according to the 
Helmholtz orthogonal decomposition [7]. An equation on the dynamics of vorti-
city ξ  is then included in the full model. As temporal integration of the vorticity 
requires the knowledge of the velocity value at each time step, the discrete 
computation of w  from ξ  is performed, based on an algebraic decomposition of 
vorticity. The transport of image brightness by velocity, which is the usual optical 
flow equation, is chosen to describe the image dynamics.  

Section 2 describes the divergence-free image model used for motion 
estimation on an image sequence. The algebraic method that computes w  from 
its vorticity ξ  is also given. Section 3 explains how the solution is obtained by 
minimizing a cost function with a strong 4D-Var (no error on the dynamics) data 
assimilation method. The derivation of a reduced model by the Galerkin 
projection is provided in Section 4. The learning method used to process long 
temporal image sequences is fully described in Section 5. Section 6 provides 
results on synthetic data for the full model and Section 7 for the learning method 
on a long temporal window.  

2. Definition of the full model 
This section describes the divergence-free model that is used to determine 

velocity from images, on the pixel grid, on the first window of the long temporal 
sequence.  

2.1. Divergence-free model 
Vorticity characterizes a rotational motion while divergence characterizes 

sinks and sources in a flow. A fluid motion ( )Tvu=w  is described by its 

vorticity 
y

u

x

v
=

∂
∂

∂
∂ −ξ , under the hypothesis of null divergence [7]. ξ  is chosen 

as the first component of the state vector X  of the full model. Deriving the 
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evolution law for ξ  requires heuristics on the velocity w . The Lagrangian 

constancy hypothesis, 0=
dt

dw
, is considered in the paper that can be expanded as 

( ) 0
∂
∂

=ww+
t

w ∇. , or:  
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Let us compute the y-derivative of Eq. (1) and subtract it from the x-de-

rivative of Eq. (2), replace the quantity 
y

u

x

v

∂
∂

∂
∂ −  by the vorticity ξ , and we 

obtain:  
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This is rewritten in a conservative form as:  

0)( =∇+
∂
∂

w
t

ξξ
                                                  (4) 

The observations that are used for the data assimilation process are images 
acquired by satellites. The second component of the state vector is chosen as a 
pseudo-image sI , which has the same dynamics than the image observation. It is 
included in the state vector in order to allow an easy comparison with the image 
observations at each acquisition date: they have to be almost identical. The evolution 
law chosen for sI verifies the heuristics for the transport of images by velocities: this 
is the well known Optical Flow Constraint Equation [1] expressed as:  

0=∇+
∂

∂
wI

t

I
s

s                                                (5) 

or with the divergence-free hypothesis:  
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t

I
s

s                                                   (6) 

The divergence-free model is then defined by the state vector ( )TsI=X ξ  
and its evolution system:  

0)( =∇+
∂
∂

w
t

ξξ
                                                         (7) 
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s                                                   (8) 
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2.2. Algebraic computation of w  
When the state vector is integrated in time from an initial condition, using 

Eqs. (7,8), the knowledge of ξ , sI  and w  is required. The velocity field w  
should then be computed from the scalar field ξ  as follow. A stream function ϕ  
is first defined as the solution of the Poisson equation:  

ξϕ =∆−                                                                (9) 

Then, w  is derived from ϕ :  

T

yy
w 









∂
∂−

∂
∂= ϕϕ

                                                       (10) 

In the literature, Eq. (9) is usually solved in Fourier domain, with periodic 
boundary conditions. An algebraic solution is proposed in order to allow Dirichlet 
boundary conditions. An eigenfunction,φ , of the linear operator ∆−  has to 

verify λ=φ∆− with λ  the associated eigenvalue. Explicit solutions of this 
eigenvalue problem are the family of bi-periodic functions 

)sin()sin()( mynx=yx,mn, ππφ  with the associated eigenvalues 2222 mπ+nπ=λ mn, . 

These functions form an orthogonal basis of a subspace of )(Ω2L , space of square-

integrable functions defined on the spatial domain Ω . Let )( mn,a  be the coefficients 

of ξ  in the basis )( mn,φ . We have ∑
mn,

mn,mn, yx,a=yx, )()( φξ . It comes:  

),(),(
, ,

, yx
a

yx
mn mn

mn ϕ
λ

ϕ ∑=                                      (11) 

We verify:  
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At each time step, having knowledge of ξ  and )( mn,φ , the values of )( mn,a  

are first computed. Then φ  is derived by Eq. (11), using the )( mn,λ values, and w  

by Eq. (10).  

3. Strong 4D-Var Data Assimilation 
Image assimilation is applied on the first window of the long sequence with 

the full model described in Section 2.  

We consider the state vector ( )Ts tyxItyx=y,tx,X ),,(),,()( ξ defined on 

the space-time domain ],t[ N0×Ω . In order to determineX on this domain, the 
4D-Var framework considers a system of three equations to be solved. 
The first equation describes the evolution in time of the state vector X . This is 
given by Eqs. (7, 8). For sake of simplicity, we summarize the system and 
introduce the evolution model M  for the state vectorX :  
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0)( =+
∂
∂

XM
t

X
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We consider having some knowledge of the state vector value at initial date 0 
which is described by the background value )( yx,Xb  . As this initial condition is 
uncertain, the second equation of the system involves an error term:  

),(),()0,,( yxyxXyxX Bb ε+=                                 (13) 

The error )( yx,Bε  is supposed Gaussian and characterized by its covariance 

matrix )( yx,B .The last equation, named observation equation, links the state 

vector to the image observations )( y,tx,I . It is expressed as:  

),,()),,((),,( tyxtyxXHtyxI Rε+=                            (14) 

with H the observation operator.  
As the component sI is directly comparable to the observations, the operator 

H  reduces to a projection: sI=HX=XH )( . Image acquisitions are noisy and 
their underlying dynamics could be different from the one described by Eq. (8). 
An observation error, Rε , is used to model these uncertainties. It is supposed 

Gaussian and characterized by its covariance matrix )( y,tx,R .  
For discussing how Eqs. (12, 13, 14) are solved by the data assimilation 

method, the state vector and its evolution equation are first discretized in time 
with an Euler scheme. The space variables x and y are omitted for sake of 

simplicity. Let dt  be the time step, the state vector at discrete index k ,  

tNk ≤≤0 , is denoted )()( dtkX=kX × . The discrete evolution equation is :  

))(())(()()1( kXZkXdtMkXkX k=−=+                          (15) 

with ( )Tssk kξwkIdtkIkξwkξdtkξ=kXZ )))(()(()()))(()(()())(( .. ∇−∇− . We 

assume that obsN  image observations )( itI  are acquired at indexes. 

obsNi1 t<<t<<t LL . Looking for ))()0(( tNX,,X=X L  solving Eqs.(15, 13, 

14) is expressed as a constrained optimization problem: the cost function 

+−−= ∫
Ω

− dydxXXBXXXJ b
T

b ))0()0(())0()0((
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))0(( 1  

dydxtItHXtRtItHX ii

N

i
i

T
ii

Obs
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1 −−+ ∑ ∫
= Ω

−  

has to be minimized under the constraint of Eq. (15). The first term of J  comes 
from Eq. (13). The second term of J  comes from Eq. (14), which is valid at 
observation indexes it .  

(16) 



 71

The gradient of J  is obtained from the directional derivative of J  and from 
the definition of an auxiliary variable λ  that verifies the backward equation:  

))()()(()1()( 1
*
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Z
k Tk −++











∂
∂
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with 0)( =Nλ t , the term ))()()(( kIkHXkRH T −−1  being only taken into 

account at observation indexes it . It can be proven [8] that the gradient reduces to:  

)0())0((1
)0( λ+−=∆ −

bX XXBJ  

The cost function J  is minimized using an iterative steepest descent method. 
At each iteration, the forward time integration of X  is performed which provides 
J , then a backward integration of λ  computes )0(λ  and provides J∇ . An 

efficient solver [9] is used to perform the steepest descent given J  and J∇  .  

4. Derivation of a reduced model 
This section explains the derivation by Galerkin projection of a reduced 

model from the full model described in Section 2.  
We assume that we have knowledge of the background value bξ of vorticity 

at the beginning of the studied temporal window. The first issue is to define 
subspaces for vorticity fields and images, onto which the evolution equations (7) 
and (8) are projected. These subspaces are defined by their respective orthogonal 
basis ξΨ  and IΨ  . First, a Proper Orthogonal Decomposition transform (POD) 

is applied to the image observations  Zz
ZII ...1}{ ==  that defines ′IΨ . Second, bξ  

is numerically integrated in time with Eq. (7). It provides snapshots, on which 

POD is applied to obtain ′ξΨ . We keep the first K  modes of ′ξΨ  and the first L  

modes of ′IΨ  to obtain ξΨ  and IΨ .  

Let )(tai  and )(tbj  be the projection coefficients of )(x,tξ  and )(x,tI s  on 

ξΨ  and IΨ . )(x,tξ  and )(x,tI s  are then approximated by:  
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and replaced in Eqs. (7) and (8):  
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This system is projected on ξΨ  and IΨ :  
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with ,  being the scalar product in the )(Ω2L  space:  

∫
Ω

= dxxgxFgf )()(,                                                   (23) 

System (21, 22) is simplified to get:  

KktakBtat
dt

da Tk ...1,0)()()()( ==+                           (24) 

LltblGtat
dt

db Tl ...1,0)()()()( ==+                                (25) 

with: T
K tata=ta ))()(()( …1 , T

L tbtb=tb ))()(()( …1 , 

B(k) a KK ×  matrix :   
kξ,kξ,

kξ,jξ,iξ,
ji,

ψ,ψ

ψ,ψψw
=B(k)

∂)( ⋅
 , 

G(l)  a LK ×  matrix :    
lI,lI,

lI,jI,iξ,
ji,

ψ,ψ
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=G(l)

∂)( ⋅
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Let T
R tbta=x,tX ))()(()(  be the state vector of the reduced model. System 

(24, 25) is rewritten as:  

0)( =+ RR
R XM

dt

dX
                                           (26) 

RM  being the Galerkin projection of the full model M  on ξΨ  and IΨ . 

5. Learning reduced models on sliding windows 
This section describes the learning method on sliding windows, with the full 

model of Section 2 applied on the first window and the reduced models of 
Section 4 applied on the following. This learning method allows to process long 
temporal image sequences.  

The discrete sequence Z1=z
zI=I …}{  is first split into short temporal 

windows, with 4 to 6 images, that half overlap in time. These windows are 
denoted mWi , with m  the index. Images belonging to 1Wi  are assimilated in the 
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divergence-free model described in Section 2. This allows the retrieval of the 
vorticity on 1Wi . 

The retrieved value at the beginning of 2Wi  is taken as background vorticity 

bξ  required to learn the reduced model on 2Wi , as it has been explained in 

Section 4. The coefficients of projection of images belonging to 2Wi are 
assimilated in the reduced model to retrieve the vorticity coefficients and 
compute the vorticity values and motion fields over 2Wi .This again provides bξ  

for 3Wi and allows to learn the reduced model on 3Wi . The process is then 

iterated until the whole sequence I  has been analyzed.  
The method is summarized in Figure 1.  
 

Fig.  1. Learning reduced models on sliding windows. 

The major advantage is that full assimilation is only applied on the first 
temporal window 1Wi  that has a short duration. It requires, at each iteration of the 

optimisation process, a forward integration of M  and a backward integration of 
its adjoint [5]. The complexity is proportional to the image size multiplied by the 
number of time steps in the assimilation window. On the next window mWi , the 
complexity greatly decreases as the state vector involved in the reduced models 

RM  is of size L+K , which is less than 10 in the experiments.  

6. Results of the full model 
In order to quantify the method, it is applied on synthetic data produced by 

twin experiments.  
A sequence of five synthetic observations (see Figure 3) is obtained by time 

integration of the divergence-free model from the initial conditions displayed in 
Figure 2. 

t1 t5 t7 t8 t9 t10 t11 t12t2 t3 t6

Assimilation Reduced Model

Assimilation Reduced Model

Assimilation Full Model

t4
T0 TF

Observation Dates tz

Assimilation Full Model 

Assimilation Reduced Model 

Assimilation Reduced Model 
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Fig.  2: Pseudo-image, vorticity (positive values are drawn in 
white, negative ones in black) and motion field at t = 0.  

 

      

    Fig.  3. Observations. 

For the assimilation experiment, the background of vorticity is set to zero and the 
one of pseudo-image is the first observation. The result of the assimilation process is 

the state vector ( )Ts kIk=kX )()()( ξ  and its associated motion vector w(k) over 
the discrete assimilation window. In Table 1, the error between the motion result and 
the ground truth is given for our approach and four state-of-the-art image processing 
methods: [1, 10 – 12] that use either a 2L  regularization of motion [1] or a second 
order regularization on the divergence [10 – 12].  

This demonstrates that our approach is almost exact for this twin experiment.  

7. Results of the learning method on sliding windows 
Twin experiments were also designed to quantify the learning method on sliding 

windows and its benefit for motion estimation on long temporal image sequences.  
The full model was used, with initial conditions displayed in Figure 4. 

Snapshots of sI  were taken to create the observation images Z=z
zI=I …1}{ . 

Assimilation of these data in the full and reduced models is then applied as desc- 
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Table 1: Error analysis: misfit between motion results and ground truth. 

Method 
Angular error (in deg.) Norm error (in %) 

Mean 
Std. 
Dev. 

Min Max Mean Min Max 

[1]  15,26 9,65 0,33 67,12 24,98 0,85 93,10 
[11] 12,54 9,49 0,17 68,49 20,03 0,51 87,74 
[12] 10,41 5,34 0,06 35,58 18,07 0,09 92,31 
[10] 10,61 6,92 0,00 56,62 18,01 0,01 97,74 
Our 
approach 

0,18 0,10 0,00   0,572 0,41 0,00 19,47 

 

described in Section 5 on six windows. Results on motion estimation are given in 
Figure 5 and compared with the ground truth provided by the simulation creating 
the observations. Each column corresponds to the first frame of one of the six 
windows mWi .  

  
Fig.  4. Initialisation for the twin experiment: a – )0(ξ ; b – )0(sI . 

 
In order to demonstrate the potential of the learning method on sliding 

windows, statistics on the retrieved vorticity are provided. The normalized root 
mean square error (in percentage) ranges from 1,1 to 4,0% from the first to the 
sixth window, while the correlation value between the retrieved vorticity and the 
ground truth decreases from 0,99 to 0,96.  

The computing time reduces from around 4 hours for the first window 
processed by the full model to less than 1 minute for the next five one, processed 
by reduced models.  

8. Conclusions 
In the paper, we proposed a learning method on sliding windows for 

estimating motion on long temporal image sequences with data assimilation 
techniques. This method couples full and reduced models obtained by Galerkin 
projection and allows to process images in quasi-real time. The method has been 
quantified with twin experiments to demonstrate its potential. First, the quality of 
motion fields retrieved by the full model has been assessed. Second, statistics on 
performances of the reduced models learned on the sliding windows have been 
provided. 

a b 
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Fig. 5. Estimated Motion (a – e) compared to the ground truth (g – k). 
 

a b c d e 

g h i k j 
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One perspective is to replace the POD bases ξΨ  which were used to define 

the reduced models by a fixed basis in order to even reduce the computational 
requirements on the first part of the image sequence.  
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АНОТАЦ IЯ    У статті описується метод вкладених вікон, використовуваний для 
розрахунку параметрів руху при обробці зображень океану, отриманих за 
допомогою супутникових систем. «Повна модель», яка використовується для опису 
динаміки полів, заснована на рівнянні бездівергентного руху рідини і перенесення 
яскравості зображення швидкістю. Послідовність зображень розбивається на 
невеликі тимчасові вікна, з половинною перекриттям у часі. Асиміляція зображення 
в повній моделі проводиться для першого вікна. Це дозволяє визначити підпрос-
тори полів руху і зображень та побудувати «редуцiровану модель» проектуванням 
на ці підпростори методом Гальоркіна. Асиміляція даних в «скороченої моделі» 
застосовується для другого вікна. Цей процес повторюється для всієї послідовності 
вікон. Основною перевагою такого підходу є прискорення обробки, що дозволяє 
використовувати його при обробці зображень у темпі, близькому до реального часу. 
Переваги «скороченої моделі» продемонстровані чисельними експериментами 
використовуючи метод близнюків. 
 
 
 
АННОТАЦИЯ    В статье описывается метод вложенных окон, используемый для 
расчета параметров движения при обработке изображений океана, полученных с 
помощью спутниковых систем. «Полная модель», которая используется для 
описания динамики полей, основана на уравнении бездивергентного движения 
жидкости и переносе яркости изображения скоростью. Последовательность 
изображений разбивается на небольшие временные окна, с половинным пере-
крытием во времени. Ассимиляция изображения в полной модели проводится для 
первого окна. Это позволяет определить подпространства полей движения и 
изображений и построить «редуцированную модель» проектированием на эти 
подпространства методом Галеркина. Ассимиляция данных в «редуцированной 
модели» применяется для второго окна. Этот процесс повторяется для всей 
последовательности окон. Основным преимуществом такого подхода является 
ускорение обработки, что позволяет использовать его при обработке изображений в 
темпе, близком к реальному времени. Преимущества «редуцированной модели» 
продемонстрированы численными экспериментами используя метод близнецов.  

 
 


