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LEARNING REDUCED MODELSFOR MOTION ESTIMATION
ON OCEAN SATELLITEIMAGES

The paper describes a learning method on slidingdavis for estimating apparent
motion on long temporal satellite sequences adadjaver oceans. A «full model», which is
defined on the pixel grid, is chosen to descrile diznamics of motion fields and images,
based on heuristics of divergence-free motion ahebaion of image brightness by the
velocity. The image sequence is split into smaigeral windows that half overlap in time.
Image assimilation in the full model is appliedtba first window to retrieve its motion field.
This makes it possible to define subspaces of mditds and images and a «reduced model»
is defined by applying the Galerkin projection bé tfull model on these subspaces. Data
assimilation in the reduced model is applied os $hicond window. The process is iterated for
the next window until the end of the whole imagguemce. Each reduced model is then
learned from the previous one. The main advantatiee@pproach is the small computational
requirements of the assimilation in the reduced afsothat make it feasible to process in
guasi-real time image acquisitions. Twin experiradrtve been designed to quantify the full
model and the learning method on sliding windows @emonstrate the quality of the motion
fields estimated by the approach.

KEYWORDS Motion Estimation, Data Assimilation, Model Redanti Galerkin
projection

1. Introduction

Motion estimation from an image sequence has baendively studied since
the beginning of image processing [1, 2]. The antoi retrieve the velocity field
w(x,t) visualised by a discrete image sequel = {17}, 7 ={1(Xt,)},=1 7 .
The application of data assimilation techniques ntotion estimation also
emerged a few years ago [3 — 5]. In the case ofiomo¢stimation, these
techniques aim to find the optimal solution to tbquations describing the
temporal evolution of motion fields and images @amdhe observation equation,
which links the motion field to the observed imatga. Their major drawbacks
are the memory and computer resources requireddthatot allow to process
long temporal sequences of large size images. Tor@end this problem,
reduction methods are required to apply the daterglation on subspaces. In [6]
such reduced model has been proposed. Coefficiehésacterizing image
observations in the image subspace are assimiiatdie reduced model to
estimate those characterizing the motion field.
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In this paper, we focus on the estimation of motmm long temporal
windows of satellite images acquired over oceat® ifnage sequence is split
into small windows that half overlap in time. A #fmodel» is chosen in order to
approximately describe the dynamics of motion 8eldnd images. Image
assimilation in the full model is applied on thesfiwindow to retrieve its motion
field. A learning process is designed that defimeseduced model» from the full
model in the second window. This learning definbe subspaces used to
characterize motion and images and applies therkdalprojection of the full
model on these subspaces. Data assimilation iretheced model is then applied
for this second window. The learning method isaited on the next window until
the whole image sequence has been processed.

The paper describes the two main components ofeluiming method on
sliding windows: the full model and its image agition process, the learning
of reduced models and their data assimilation syste

Oceans are incompressible fluids and the 2D incessgible hypothesis still
remains a good approximation for image sequenaas dr small vertical motion
occurs (no upwelling or downwelling). If the motidield is divergence-free
(div(w)=0), it is then only characterized by its vorticié , according to the
Helmholtz orthogonal decomposition [7]. An equatmmthe dynamics of vorti-
city & is then included in the full model. As temporakigration of the vorticity
requires the knowledge of the velocity value athetime step, the discrete
computation ow from ¢ is performed, based on an algebraic decomposifion
vorticity. The transport of image brightness byoaitly, which is the usual optical
flow equation, is chosen to describe the image ohyos

Section 2 describes the divergence-free image moded for motion
estimation on an image sequence. The algebraicotidtiat compute w from
its vorticity ¢ is also given. Section 3 explains how the solut®nbtained by
minimizing a cost function with a strong 4D-Var (aoor on the dynamics) data
assimilation method. The derivation of a reduceddehoby the Galerkin
projection is provided in Section 4. The learningthod used to process long
temporal image sequences is fully described ini@ed. Section 6 provides
results on synthetic data for the full model andt®ea 7 for the learning method
on a long temporal window.

2. Definition of the full model

This section describes the divergence-free modal ifhused to determine
velocity from images, on the pixel grid, on thesfiwvindow of the long temporal
sequence.

2.1. Divergence-free model
Vorticity characterizes a rotational motion whilévefgence characterizes

sinks and sources in a flow. A fluid moticw=(u v)" is described by its

V_

vorticity &= _u, under the hypothesis of null divergence ¢|.is chosen
y

as the first component of the state vecXr of the full model. Deriving the

67



evolution law for & requires heuristics on the velociw. The Lagrangian

constancy hypothesi%\l: 0, is considered in the paper that can be expansled a

—Y[V+ (w.Ow=0, or:

a—u+u%+v%:0 1)
ot ox oy
ﬂ+uﬂ+vﬂ20 (2)
ot ox oy

Let us compute thg-derivative of Eq. (1) and subtract it from tRkele-

rivative of Eq. (2), replace the quanti—v——u by the vorticity é, and we
X

obtain:
g+ug+vg+ %+@ =0 (3)
ot ox oy ox oy
This is rewritten in a conservative form as:
0
% oG =0 (4)

The observations that are used for the data asgioml process are images
acquired by satellites. The second component okthge vector is chosen as a
pseudo-imagi |, which has the same dynamics than the image odisenv It is

included in the state vector in order to allow asyecomparison with the image
observations at each acquisition date: they hate @most identical. The evolution
law chosen fo | ¢ verifies the heuristics for the transport of imaggselocities: this

is the well known Optical Flow Constraint Equati{dhexpressed as:

al ¢
—+0lw=0 5
S+l )

or with the divergence-free hypothesis:
%s 001w =0 6)(
ot

The divergence-free model is then defined by theestectol X = (£ Is)T

and its evolution system:

%m(é’w):o @)
dlg _
E"‘D(ISW)—O 8) (
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2.2. Algebraic computation of w
When the state vector is integrated in time fromiratial condition, using

Egs. (7,8), the knowledge (¢, | and w is required. The velocity fiellw
should then be computed from the scalar {£lds follow. A stream functio ¢
is first defined as the solution of the Poisson &quoa

-Ap=¢ )
Then, w is derived fron ¢ :
T
dy oy

In the literature, Eq. (9) is usually solved in Reu domain, with periodic
boundary conditions. An algebraic solution is psgabin order to allow Dirichlet
boundary conditions. An eigenfuncti ¢, of the linear operatc—A has to

verify —A@=1 with 1 the associated eigenvalue. Explicit solutions lo$ t
eigenvalue  problem are the family of bi-periodic ndtions

Ghn(Xy) = singnx)sin(zmy) with the associated eigenvali,,, = z°n®+ z°m? .
These functions form an orthogonal basis of a sadespfL2(Q) , space of square-
integrable functions defined on the spatial dorQnLet (a,,) be the coefficients

of ¢ in the basi(¢,,,) . We have£(x,y) = Zanngonm(x,y). It comes:
nm

Py =X 2" P(xY) (11)

nm’'nm

We verify:

~09(xY) ==Y 22" Apx ) =Y " Aynglxy) = €

nm” nm nm’ nm

At each time step, having knowledge ¢ fand (¢,,) , the values o(a,,)
are first computed. They is derived by Eq. (11), using tl(4,,,) values, anctw
by Eq. (10).

3. Strong 4D-Var Data Assimilation

Image assimilation is applied on the first windofslee long sequence with
the full model described in Section 2.

We consider the state vect X(x,y,t)= (£(x,y,t) I(xy,t))" defined on
the space-time doma Qx[0,ty ] . In order to determir X on this domain, the
4D-Var framework considers a system of three equoatito be solved.

The first equation describes the evolution in tiofighe state vectc X . This is
given by Egs. (7, 8). For sake of simplicity, wemsnarize the system and

introduce the evolution mod M for the state vect X :
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X _
S M) =0 (12)

We consider having some knowledge of the stateoveetiue at initial date O
which is described by the background ve X, (x,y) . As this initial condition is
uncertain, the second equation of the system imgo&n error term:

X (%,Y,0) = X, (% y) +£5(XY) (13)

The erro&;(X,y) is supposed Gaussian and characterized by itgiaoca
matrix B(X,y).The last equation, named observation equatioks lihe state
vector to the image observatic I(x,y,t) . It is expressed as:

(% y,1) = H(X(X y,1)) + £r (X Y, 1) (14)

with H the observation operator.
As the componer | ¢ is directly comparable to the observations, theaipe

H reduces to a projectiolH (X)= HX= I, . Image acquisitions are noisy and

their underlying dynamics could be different frone tone described by E®)(
An observation errc &g, is used to model these uncertainties. It is ss@po

Gaussian and characterized by its covariance n R(X,y,t) .

For discussing how Egs. (12, 13, 14) are solvedheydata assimilation
method, the state vector and its evolution equadianfirst discretized in time

with an Euler scheme. The space variatx@nd yare omitted for sake of

simplicity. Let dt be the time step, the state vector at discretexirk,
0<k< N, is denote(X (k)= X(kxdt). The discrete evolution equation is :

X(k+1) = X(k) = dtM (X (K)) = Z, (X (k)) (15)

with  Z, (X (K)) = (¢(K) — dtO.(E(WEK))  15(K) = diD(I(WEK)))T . We
assume that N, image observations!(tj) are acquired at indexes.
ty <-- <t <<ty - Looking for X=(X(0),--,X(N,)) solving Egs.(15, 13,
14) is expressed as a constrained optimizationi@malthe cost function

I(X(0)) =§ [(X(© =X ) B™X (0) - X, (0)) dx dy+
© (16)
1 Nogs T
+§;J<Hxai)—lai» R ()(HX ) = 1(4)) dx dy
has to be minimized under the constraint of Eq).(T&e first term 0lJ comes
from Eqg. (13). The second term J comes from Eq. (14), which is valid at
observation indexet; .
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The gradient 0 J is obtained from the directional derivative Jfand from
the definition of an auxiliary variab A that verifies the backward equation:

A(K) = @ik J A(K +1) + HTRYK)(HX (K) - 1 (K))

with  2(N;)= 0, the term HTR'l(k)(HX(k)—I(k)) being only taken into
account at observation indext; s It can be proven [8] that the gradient reduces to

AJy o) = B™H(X(0) = Xp) +A(0)

The cost functiorJ is minimized using an iterative steepest descathou.
At each iteration, the forward time integration X *is performed which provides
J, then a backward integration ‘A computes1(0) and provides(J. An

efficient solver [9] is used to perform the steeplEescent give J and1J .

4, Derivation of areduced model
This section explains the derivation by Galerkimjgction of a reduced
model from the full model described in Section 2.

We assume that we have knowledge of the backgreahe &, of vorticity

at the beginning of the studied temporal windowe Thist issue is to define
subspaces for vorticity fields and images, ontociwhhe evolution equations (7)
and (8) are projected. These subspaces are défintekir respective orthogonal
basis?. and ¥, . First, a Proper Orthogonal Decomposition tramaf@OD)

is applied to the image observations={1“},_, . that defines&l’; . Second ¢,
is numerically integrated in time with Eq. (7).dtovides snapshots, on which
POD is applied to obtai\al’,g . We keep the fireK modes oﬂ}’,& and the firsL
modes 015”; to obtain¥; and?, .

Let & (t) and b;(t) be the projection coefficients {(x,t) and I(x,t) on
¥, and?, . §(x,t) andl¢(x,t) are then approximated by:

K

)= a7 (X (17)
i=1
L

Is(xt) =Y b; )7 ; (%) (18)

j=1
and replaced in Egs. (7) and (8):
K

. K L
Zaﬂ(t)ﬂ”g,i 0)+w D> a7, (X)J Dﬂ{z a; ()% (X)] =0 (19

= i=1 =1

i=1 j=1

L K L
Z%—?(t)‘lfl )+ V\{;@ O, (X)J DD{ij (OF (X)J =0 (20)
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This system is projected (¥, and ¥, :

K K
%(t)<y/f'k'y’<"k>+< Zai(t)‘i”s,ijﬂﬂ{zai(t)y’g,ij,%,k>=0 (21)
i=1

i=1

i

ah K L
E(t)<'f’| I4X > + Zai O ¢; j Dﬂ[ b; ()7 J 7,)=0 (22
i=1 =]

with (,) being the scalar product in tL*(Q) space:

(f.9)= [FO3 dax 23]
System (21, 22) is simplifiZd to get:
OLl;‘:«(t)+aT(t)B(k)a(t):o, k=1.K 26)
%(t) +a’ (OG(b(H) =0, 1=1.L (25)

with: a(t)= (a,(t)...ax (t))", b(t)= (by(t)...b (1)),

<W(W A v -llfg,k>
<l//g,k 1‘/’§,k>

B(k) a KxK matrix : B(k); =

<W(‘/’§,i) v ﬂ/’|,|>
<W|,| vl/’|,|> .

G(l) aKxL matrix: G(l) ; =

Let Xg(x,t)= (a(t)b(t))T be the state vector of the reduced model. System
(24, 25) is rewritten as:

dXx
d_tR+MR(XR):O (26)

Mg being the Galerkin projection of the full mocM on ¥, and?, .

5. Learning reduced models on sliding windows

This section describes the learning method onrglisiindows, with the full
model of Section 2 applied on the first window aheé reduced models of
Section 4 applied on the following. This learningthod allows to process long
temporal image sequences.

The discrete sequence={l1%},., , is first split into short temporal
windows, with 4 to 6 images, that half overlap imd. These windows are
denotecWi,, , with m the index. Images belonging Wi, are assimilated in the
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divergence-free model described in Section 2. Hiisws the retrieval of the
vorticity on Wiy .

The retrieved value at the beginningWwf, is taken as background vorticity
&y required to learn the reduced model Wi, , as it has been explained in
Section 4. The coefficients of projection of imagkslonging to Wi,are
assimilated in the reduced model to retrieve thetiaity coefficients and
compute the vorticity values and motion fields oW . This again provide &,
for Wiy and allows to learn the reduced model \fi;. The process is then

iterated until the whole sequer | has been analyzed.
The method is summarized in Figure 1.

Observation Dates tz

t1 2 t3 t4 5 t6 t7 8 t9 10 tl1 t12
T0 TF
| |
| |

Assimilation Full Model

Assimilation Reduced Modell:

Assimilation Reduced Moded|

Fig. 1.Learning reduced models on sliding windows.

The major advantage is that full assimilation idyoapplied on the first
temporal windowWi,; that has a short duration. It requires, at eafation of the
optimisation process, a forward integrationM and a backward integration of
its adjoint [5]. The complexity is proportional tiee image size multiplied by the
number of time steps in the assimilation window. t@& next windowWi,,, the
complexity greatly decreases as the state vectahiaed in the reduced models
Mg is of sizeK + L, which is less than 10 in the experiments.

6. Results of the full model

In order to quantify the method, it is applied gmthetic data produced by
twin experiments.

A sequence of five synthetic observations (seerEi@) is obtained by time
integration of the divergence-free model from thigial conditions displayed in
Figure 2.
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Fig. 2: Pseudo-image, vorticity (positive values are drawn
white, negative ones in black) and motion field at0.

Fig. 3.Observations.

For the assimilation experiment, the backgrounebdicity is set to zero and the
one of pseudo-image is the first observation. Hselt of the assimilation process is
the state vectc X (k)= ({ (k) Is(k))T and its associated motion vec w(k) over
the discrete assimilation window. In Table 1, therebetween the motion result and
the ground truth is given for our approach and &tate-of-the-art image processing
methods: [1, 10 — 12] that use eitheLa regularization of motion [1] or a second
order regularization on the divergence [10 — 12].

This demonstrates that our approach is almost éaathis twin experiment.

7. Results of the learning method on sliding windows

Twin experiments were also designed to quantifyghening method on sliding
windows and its benefit for motion estimation ongdaemporal image sequences.

The full model was used, with initial conditionsspliayed in Figure 4.

Snapshots ol were taken to create the observation imel ={1%},., , .
Assimilation of these data in the full and reduosatiels is then applied as desc-
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Table 1:Error analysis: misfit between motion results anolgd truth.

Angular error (in deg.) Norm error (in %)
Method Mean Std. Min Max Mean Min Max
Dev.

[1] 15,26 9,65 0,33 67,12 24,98 0,85 93,10
[11] 12,54 9,49 0,17 68,49 20,03 0,51 87,74
[12] 10,41 5,34 0,06 35,58 18,07 0,09 92,31
[10] 10,61 6,92 0,00 56,62 18,01 0,01 97,74
Our 0,18 0,10 0,00 0,572 0,41 0,00 19,47
approach

described in Section 5 on six windows. Results otion estimation are given in
Figure 5 and compared with the ground truth prodibg the simulation creating
the observations. Each column corresponds to tee fflame of one of the six
windows Wi, .

Fig. 4.Initialisation for the twin experiment: a&(0) ; b — 15(0) .

In order to demonstrate the potential of the leaynmethod on sliding
windows, statistics on the retrieved vorticity gm®vided. The normalized root
mean square error (in percentage) ranges fromol410% from the first to the
sixth window, while the correlation value betweée tetrieved vorticity and the
ground truth decreases from 0,99 to 0,96.

The computing time reduces from around 4 hourstler first window

processed by the full model to less than 1 minotdte next five one, processed
by reduced models.

8. Conclusions

In the paper, we proposed a learning method oringlidvindows for
estimating motion on long temporal image sequengits data assimilation
techniques. This method couples full and reducedetsoobtained by Galerkin
projection and allows to process images in quadifime. The method has been
quantified with twin experiments to demonstratepibtential. First, the quality of
motion fields retrieved by the full model has bessessed. Second, statistics on

performances of the reduced models learned onlitieagswindows have been
provided.
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One perspective is to replace @D bases¥ which were used to define

the reduced models by a fixed basis in order toeeeluce the computational
requirements on the first part of the image segeienc
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AHOTALA Y craTTi onuCYeTbCS METOJ BKIJIQJIEHUX BiKOH, BUKOPHCTOBYBaHWIA IS
po3paxyHKy mapaMeTpiB pyXy mpu oOpoOLi 300paxeHb OKeaHy, OTPHMaHHX 3a
JIOTIOMOTOI0 CYMYTHUKOBHUX cUCTeM. «[loBHA MOJIENb>», ika BUKOPUCTOBYETHCS LIS OIIUCY
JIMHAMIKM TIOJTiB, 3aCHOBaHA Ha PiBHSIHHI 0€3iBEepreHTHOro PyXy PilMHM i MepeHeceHHs
ACKpaBOCTi 300paxkeHHA MIBUAKICTIO. [locnifmoBHICTE 300paxeHb poO30OMBA€ETHCA Ha
HEBEJIMKI TIMYacOBi BiKHa, 3 TIOJIOBUHHOIO TIEPEKPUTTAM Y Yaci. ACUMINALis 300pakeHHs
B TIOBHilf MOJeJi MPOBOANTHCS Ui Tepiioro BikHa. Lle mo3Boise BU3HAUMTH MiANpoc-
TOPH TOJIB PyXy i 300paxkeHb Ta MOOYAYBaTH <«PenyLipoBaHy MOJENb» MPOEKTYBAHHAM
Ha Ui mignpoctopu MetonoM [anmbopkiHa. ACHMINALIS JaHWX B «CKOPOYEHOI MOAENi»
3aCTOCOBYEThCS IS APYTroro BikHa. Lleit mpoiiec mMOBTOPIOETHCS IS BCi€T OCTiTOBHOCTI
BikOH. OCHOBHOIO TEpeBarol TaKoro MiAXOAy € NMPUCKOPEHHs O0OpOOKH, IO AO03BOJISIE
BUKOPUCTOBYBATH #oro npu o6poOLi 300paxeHb y TeMIli, OJIM3bKOMY A0 peaqbHOTo Yacy.
[lepeBarn «ckopoueHoi MoAeNi» TNPOAEMOHCTPOBAaHI YMCEIbHUMHU EKCIepUMEHTaMu
BUKOPUCTOBYIOYH METOJ OJIM3HIOKIB.

AHHOTALHA B cratbe onMCbIBAE€TCS METOJ BIOKEHHBIX OKOH, UCTIOJb3YyEeMbIH 1Jis
pacdera rmapameTpoB IBIKEHHWS MpH 00paboTke M300pakeHWil OKeaHa, MONyYEHHBIX C
MOMOLIBIO CIYTHUKOBBIX cHcTeM. «lloiHas Mopenb», KOTOopas HCMONb3yeTCsl IS
OTMCaHWs IWHAMHUKH TI0Jielf, OCHOBaHa Ha ypaBHEHMM OE3IMBEPTEHTHOTO IBIDKEHUS
KUIOKOCTH W TIEpeHOCe SIPKOCTH M300paxeHust cKopocThio. [locnmenoBaTenbHOCTH
n300paxeHnii pa3buBaeTcs Ha HeOOJbIIME BpPEeMEHHbIE OKHA, C TOJOBUHHBIM Iepe-
KPBITHEM BO BPEMEHH. ACCUMWIALMS M300pa)KeHUs B MOJHOW MOJETH MPOBOANUTCS A
MEepBOro OKHA. DTO TIO3BOJISIET OMNpPENENUTh MOINPOCTPAHCTBA TMOJIeH NBIKEHUS |
n300pakeHU ¥ TMOCTPOUTH <«PENYLIUPOBAHHYIO MOJENb» MPOEKTHPOBAHWEM HA 3TH
MOANPOCTPAHCTBA METOAOM [anepkuHa. ACCUMWIALMS AaHHBIX B <«PeaylUpOBaHHOMN
MOJIENT» TPUMEHSeTCS Al BTOPOTO OKHA. JTOT TMpoLecC TOBTOPsieTCS M Bcei
MOCJIEI0OBATEILHOCTH OKOH. OCHOBHBIM TPEVMYILIECTBOM TaKOTO TMMOIXO0JA SBJISETCS
yCcKOpeHHe 00paboTKH, YTO TIO3BOJISIET MCIIONB30BATh €ro Mpu 00padoTke n300pakeHui B
Temrie, OJM3KOM K peajbHOMY BpeMeHHW. [IpenMymiecTBa «penyLrpOBaHHOW MOJIENTN»
MPOIEMOHCTPUPOBAHBI YNUCIEHHBIMH KCTIEPUMEHTAMH UCTIONB3Ys METOJ OJIM3HEIIOB.
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