ELECTROMAGNETIC MODES OF A COAXIAL PLASMA WAVEGUIDE
IN AN EXTERNAL MAGNETIC FIELD
V. Karas’, I.A. Zagrebelny

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: ira@kipt.kharkov.ua

For carrying out of the further numerical comparisons with experimental researches on breakdown of a mixture
of gases by microwave radiation with a stochastic jumping phase the theoretical researches of wave dispersive prop-
erties of the coaxial waveguide are carried out. Electromagnetic modes of a coaxial plasma waveguide in an external
magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrat-
ed. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM

mode.

PACS: 52.80.Pi, 52.65.-y, 52.65.Ff, 52.70. Ds, 52.70.Kz, 84.40Fe

INTRODUCTION

For carrying out of the further numerical compari-
sons with experimental researches on breakdown of a
mixture of gases by microwave radiation with a
stochastic jumping phase [1-3] the theoretical re-
searches of wave dispersive properties of the coaxial
plasma waveguide are carried out in detail.

1. ELECTROMAGNETIC MODES
OF A COAXIAL PLASMA WAVEGUIDE
IN AN EXTERNAL MAGNETIC FIELD

In the theoretical study examines the axisymmetric
waves that extended in the coaxial waveguide, which is
filled a plasma, along the waveguide axis is applied an
external constant magnetic field. Given the dependence
of the components of the electric and magnetic fields of
the coordinates and time has the form

A(X,t) = A(r)expli(kzz —ot)] from Maxwell's
equations for the matter we get the following equation
system (compare with works [3, 4]):
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where @ p, = (47remn0/mm)1 is the electron Langmuir

frequency, oy, =€,Hg/(m,c) is the electron Lar-
mor frequency.

2. TEM-TYPE MODES OF A COAXIAL
PLASMA WAVEGUIDE WITHOUT
AN EXTERNAL MAGNETIC FIELD

First, consider the system of equations (1) in the ab-
sence of an external magnetic field, i.e. op=0, and ac-
cordingly g;=¢3, €,=0.
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k.E, +kH, =0,
ik,E, —ikH, = JE, /or
ike,E, +iksH, =H, /or,

ike,E, —ik,H, =0, (3
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?E(rE(p) =ikH,, FE(qu’) =—ike,E,-

In this case, the system is divided into two systems
of equations unrelated to describe the E- and H-wave. In
the wave of E-type nonzero components of the electro-
magnetic field E,, E,, H, and H-type wave have the
nonzero components H,, H,, E,. In a separate class you
need to make waves in the TEM are zero z-component
of the electric and magnetic fields.

We first look at the structure of TEM wave for
which, by definition, [5] E, = 0 and H, = 0. From the
equations (3) it follows:

E,=C,/r  H,=C,/r. (4)

For the existence of waves is necessary to satisfy the
boundary conditions, which in the case of coaxial
waveguide are of the form:

E,(a)=E,(b)=0, E,(a)=E,(b)=0. (5)

This means that the components of the field E, and
correspondly H,=-ks/k-E, in TEM wave since no cannot
be a solution in the form of (2.4) satisfy the boundary
conditions (5). The nonzero components, defined by the
formulas:
el ©)
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The frequency of the wave is TEM from the disper-

sion equation:

H o -S2 g

® r r

k2g, —ks® =0, )
when o< oy, TEM waves are absent, and when 0> a
dispersion law has the form:
2

o” =kic® +od, . 8)

The dispersion curves for different values wpe Shown

in Fig. 1. Curve 1 corresponds to the zero-density plas-

ma for its €; = &3 = 1. In fact, the only wave coaxial vac-

uum waveguide and the frequency @ = ksc. Curve 2

corresponds to cope=1-109rad/s; 3 — Op= 2.10%ad/s;
4 - @pe= 2.5-10°rad/s, 5 — wpe=5.6-10°rad/s.
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Fig. 1. The dispersion curves for different values of m,

In experiments on the beam-plasma generator (BPG)
signal is fed into the coaxial plasma waveguide with the
main frequency 3:-10° rad/s, which is marked by the hori-
zontal line in Fig. 1. With increasing ksthedispersion
curves 2, 3, 4, and 5 converge closer to a curve 1, ® = ksC.

Topography fields H, and E, is shown in Fig. 2. In
the middle are calculated for the case of the dispersion
curve 3 in Fig. 1 (wp = 2.10° rad/s) at the point
o = 3-10° rad/s. The curves are normalized to the value
of the H, at r = a = 0.6 cm. It can be shown that the
graphics fields H, and E; in the vicinity of the intersec-
tion points corresponding-frequency signal with a

straight @ = ksc will be very close.
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Fig. 2. Topography fields H, and E, for wpe=2-109rad/s

From (6) and Fig. 2 shows that the field H, and E,
largest differ slightly for all radii and fall of hyperbole.

3. ELECTROMAGNETIC MODES
OF A COAXIAL PLASMA WAVEGUIDE
WITHOUT AN EXTERNAL MAGNETIC

FIELD

Consider what else besides the TEM waves at the
absence in waveguide of external-magnetic field. In this
case the set equations (3) break up into two independent
subsystems. The equation for the components of field
Hy, E,,
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z-a?a(rHr)"_(kzsl_ks?)Hr:Oy
o1lo
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Equations (9) in the case kZg, —kZ = Oare the
equations for cylindrical (Bessel) functions of the first
order Z; (Ar). Their decision in the case of a two-
connected domain (coaxial waveguide) is the combina-
tion of Bessel functions first and second kinds:

E, =C(9:(An) + T, )+ BN, (ur) +N; (A1) , (10)
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where ), = 1k ?g; —kZ . Here C, B is arbitrary coeffi-

cients that are the boundary conditions. By the Bessel
functions added someone complex-conjugate of the
(horizontal bar over the function denotes complex con-
jugation) to condition real fields was performed for
complex eigen values A. Substitution E,, recorded thus
in the boundary conditions (5) and taking into account

that J;(Ar) = \]1(7_\1‘) that allows us to obtain the dis-
persion-equation:
J:;(4a) N, (4a)
J,(Ab) N, (4b)

Fig. 3 shows the solution of the dispersion equation
for the following parameters of waveguide and plasma:
a=0.6cm, b =225 cm, oy= 5.6410° rad/s. The pa-
rameters taken for the real apparatus used in the exper-
iment [2]. Type curves did not change with decreasing
of plasma density and accordingly g, under big in-
creasing of the plasma density the curves slightly lift up
the .

10" rad/s

= 0. (11)
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Fig. 3. The dispersion curves for the case
Wpe = 5.64-10° rad/s. The parameters of the waveguide:
a=0.6 cm, b =2.25 cm. The numbers 1, 2, 3 are

marked different radial waves

For the given geometrical dimensions of the wave-
guide and the plasma density is not solution at frequen-
cies below 6.034-10" rad/s. For comparison, Fig.4
shows the curves for the same parameters of the plasma
but in the case where the outer radius of the waveguide
b = 38.5 cm. At this case the lower curve in Fig. 4 at
ks = 0.013 cm™ corresponds to the frequency of the sig-
nal received from the BPG equal to o = 3-10° rad/s.
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Fig. 4. Dispersion curves for the case wy= 5.64-10° rad/s.
Waveguide parameters: a= 0.6 cm, b = 38.5 cm

The following shows the radial distribution of com-
ponents of the field for three dispersion curves shown in

Fig. 5 at ® = 2-10™ rad/s and respective k;. We see that
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for the first curve Fig. 5 the field distributions H,, E,
corresponds to one extreme point (maximum). For sec-
ond curve is the two extreme points, for the third curve
is three extreme points. The distribution of the field H,
for the first curve has no extreme points, for the second
curve is one extreme point, for the third curve is the two
extreme points.
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Fig. 5. Topography fields H,, E,, H;.
The numbers 1, 2, 3 marked radial modes

The equations for components of E,, H,, E, fields.

o190
E?E(rEr) +(k%g —k3)E, =0,
o190
g?g(mq,) +(k%g —k$)H, =0.(12)
Just as in the previous case, the solution of these

equations is a combination of Bessel functions:
H, = C(3,(0r) + 3,(ar))+ B(N, (Ar) +N, (ar)) - (13)
Substituting into the equation of the system (3):

10 .
?E(rHLP) = —|k81EZ .

Obtain an expression for E;:

E, =C(Jo(Ar))+B(Ng(rr)), (19
and after the satisfaction of the boundary conditions (5),
we obtain the dispersion equation:

The dispersion curves of the second triple of fields
shown in Figs. 6, 7 shows the dispersion curves for the
E-type wave (solid line) and H-type wave (dashed line).
On Fig. 8 shows the radial distribution of the compo-
nents of the field, three dispersion curves shown in
Fig. 6 at ® = 2-10" rad/s and related k.

38

10" rad/s

0 1 2 3 4 5 6 k, em’
Fig. 6. The dispersion curves of the relation (15)
for the case wpe = 5.64-10° rad/s. Parameters
of waveguide are: a=0.6 cm, b =2.25 cm

©.10" rad/s

o 1 2 3 4 5 6k cm’

Fig. 7. Comparison of the dispersion curves for different
triples fields. The dispersion relation (11) corresponds
dashed line and the dispersion relation (15)

corresponds solid line

We see that for the first curve of Fig. 6 the distribu-
tion of E,, H, fields have not extreme points, for the
second curve has one extreme point, for the third curve
have the two extreme points. Allocation of E, field for
the first curve corresponds to one extremal point (max-
imum). The second curve have the two extreme points,
the third curve have the three extreme points.
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Fig. 8. Topography of E,, H,, E, fields.
The numbers 1, 2, 3, marked radial modes

corresponding dispersion curves in Fig. 6
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4. ELECTROMAGNETIC MODES
OF A COAXIAL PLASMA WAVEGUIDE
IN AN EXTERNAL MAGNETIC FIELD

Let's go back to the original system of equations (1)
and is considered to be at arbitrary values of the mag-
netic field and plasma density. In this case, the inde-
pendent E-and H-type waves does not exist. Transform-
ing the system of equations, we find the relationship
between H, and E,, as well as between H,and E.:

2. 12
glaﬁ(m@yf—(k -k S22 E o,
rror & &
010 e +¢2 €
E?E(rE$)+(k“g—2-k§)E¢-kksg—ZHq, =0. (16)
1 1
Set equations for H, and E;:

%%g(rHr)+qu+sE,=o, (17)
o190
———(rE;)+ pE,+tH, =0
or rar( )+ PE r ’
~ 010
where A=§Far, q=(k%; —k2), s=kkqe,,

2 3
p=[K2 (24 5) k2 2], t= e, 1- 22 -k 2],
€ € ks € &

This system of equations (17) is equivalent to two
fourth-order equations for H, and E;:

A’H, +(p+0q)AH, +(gp—st)H, =0, (18)

A2E, +(p+Qq)AE, +(gp—st)E, =0.  (19)

From these equations it is seen that the radial com-
ponents of the electric and magnetic fields are described
by the same equation. The solution of the equation for
H, and E, is the first order Bessel function Z;(Ar). It
should be noted that A is not radial component of the
transverse Laplacian operator, and a solution of both
equations (18) is the first order Bessel function Z;(Ar).
Substituting Z; (Ar) in equation (18) we obtain an ex-
pression for the determination of A:

A —(p+q)® +(agp—st) =0,

from its we find the values of A%

2
A2, = q; P J_r,/(q;p) bst. (1)

As can be seen from (21) generally have 4-root of
equation (20):

2
M:\/q+p+ [CESae
2 4
2
xzz\/‘“p_ [@a-—m? ,
2 4

2
st—kl:—\/q+p+ @=P)" |

(20)

2 4

2 4

The properties of the Bessel functions Z,(-Ar) =-Z,(Ar)
it should be that of Bessel functions for A; and A3, as

2
x4=_x2=_\/‘“p_ @=-pP)~ |
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well as for A, and A, are linearly dependent. Therefore,
the solution of the first equation (18) will be expressed
by A; and Ap. In addition, as H; is a real value, it will be
limited to a combination of:

H, =C(Z,0ur) + Zy0uan) )+ BZu (o1 +Z40r)) . (22)
Here C and B are the arbitrary coefficients, which
are determined from the boundary conditions. Substitut-

ing H, in the form (22) with the expression (21) for A,
and X, and take into account the properties of Bessel

functions z,(xr)=2z,(ar) as well as rules for their dif-
ferentiation Z}(ir) =—-1Z,(Ar), and obtain expressions
for

AH, uA?H, :

~ _2 — _2 —
AH, = -c(xﬁzl(xlr) +xlzl(xlr)j- B(xgzl(xzr) +xzzl(x2r)j ,

RH, - c(x‘;zl(xlr) +Xi‘zl(x_1r)j . B(x‘;zl(xzr) +X‘z‘zl(x_2r)j .
After the substitution of which in the first equation

(18) we get:

NAZ, (Ar) + BRZ, (4,0) N[ 4 + 47 |4£Z,(A4r) -

—B[ A + 2 | 2, (41) + 2 2% (NZy(A4r) + BZ,(4,1)) +

N2 Z, (Gar) + BA:Z, (Aor) ~ N[ A2 + 22 | 22, (Aar) -

B[ A2+ 42 | 422, (Zer) + 422 (NZ, (ur) + BZ, (Z21) ) = 0.

Obviously, the first part of the expression-containing
sponding part with A equal to zero and after bringing the
similar items have:

NA'Z,(4r) +BAZ (4,0 -N[ AF + 4] | 412, (1) -
B[4+ 47 | 5;2,(A,0)+ 2025 (NZ,(Ar) + BZ,(4,1)) = 0.
The second part of the expression that contains the

complex conjugate 2 the solvable only if factors both
at constant C and at constant B intercept to zero, that is:

2, (uar) - 2 +12 Ji 7, (ar) +323.CZ, (ar) =0,
B752, (har) ~ B2 + 12 52, (har) + 1212BZ, (o) =0 .
And these conditions lead us to the fact that the complex

conjugate parts A1 and A2 must satisfy the equations:

a-p2eazhi a2 -0, (@)
xs—p2+22p3 a2 o,
Which, in turn, means that:
M =22Un, (24)

ro=22UnNS .

From this we can conclude that we are entitled to

write the expression for the field in the form:
H, =CZ (A4r)+BZ, (A4,r).

In our case, we will conduct a review of coaxial
waveguide with the conductive walls, which means so-
lution will be put through a Bessel function and Neu-
mann function, i.e.:

H, =C.J,(\,r)+C,J,(A,r) + BN,(A,r)+ B,N,(x,r)- (25)

Expressing E, and E, by H, written as (25), we ob-
tain:
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—k 2
Ey = 2(Csdi(hen) + BNy (1)),
3 s=1

—i
E, = ” D A(C Iy (A1) + BN, (4T)),
363 s
where
th k
Ny o = 1'221 A2 782 (26)
— 1,2 k3

Satisfying the boundary conditions (5), we obtain
the dispersion equation:
Al‘]o(ﬂla) AZ‘]O(AZa) AlNO(ﬂla) AZNO(//LZa)
Ado(Ab)  Apdg(Ah)  ANG(A4b) AN, (4b)]
L(ha)  h(ka)  N(ha)  Ni(ha) |
J(4h)  Ji(Ab)  Ni(A4b)  N,(4;b)
Below are shown the solution of the dispersion equa-
tion for the characteristic frequency with parameters
corresponding to the experimental conditions. It should
be noted that in some region on the plane (o, k3) square
Eigen values A (expression (21)) becomes complex. The
boundaries of this region are determined by the condi-
tion that (q — p)? +4st <0, after substitution of val-
uesq, p, s, t, is given by:

2)— w? - 2kZc?

N 27)

o’ (oaﬁ' + 4k320 ((,OZH + 2(0% )+
+wfkict <0.

The solution of this inequality leads to a condition
on

®: 0y <O O,

20 +mHi2(oo +cho ) k Cz)l/

o5 =KsC . (28)

o +4kic?
In this area, the Eigen values A are complex conjugate,

ie. 7\4_1=7\,2. Fig. 9 shows the dependence of the fre-

quency o vs. the longitudinal wave number k, = ks when
the electron-cyclotron frequency oy, = 1.4-10%rad/s. In
Figs. 9 and 10 a complex A%is limited lobe.

©,10” rad/s

100 4

(LR AT

. : : : : T
0,0 05 1,0 1,5 2.0 25 3.0 -
k., cm

Fig. 9. The frequency w of the longitudinal wave num-
ber ks in case wpe = 5.64-10° rad/s. The numbers repre-
sent the different branches of the plasma waves.
For each of them a specific value A: 4, = 1.86;
)2 =3.85;13=5.7;14,=7.6; 15 =95

The numbers (1) - (5) represent the different branch-
es of high-frequency plasma waves. High-frequency
plasma waves under given parameters of the waveguide
and plasma are very close to the hybrid-frequency
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1/oof,e +o?, and, for ease of analysis, are shown in a

separate chart (Fig. 11). High-frequency and low-
frequency TEM-type waves tend to ® = ksc, which is
highlighted in the chart the dashed blue line. Numerals
(6) and (7) on the graph designated two first high-
frequency electromagnetic waves. It can be seen that the
branches of plasma waves with the increase in the value
of ks is committed to wp, = 5.64-10° rad/s, but do not
cross it. For ease of analysis Fig. 10 shows some disper-
sion curves, but on a linear scale, as opposed to Fig. 9,
where the scale is logarithmic .

®,10” rad/s
R /
60 -

40+

20

D_Aﬁ,,

00 05 10 15 20 25 30 k em’
-

Fig. 10. The dependence of w vs. ks at case
Wpe = 5.64-10° rad/s in the linear scale
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14,0 4

13,51

13,0 T T T T
0,0 05 1.0 15 2,0 25

30 k,cm’
Fig. 11. The dependence wvs. ksfor case
ve = 5.64-10° rad/s in the linear scale

Fig. 11 shows a part of Fig. 10 is an enlarged axially .

It shows that near hybrid-frequency ,/w%e + 0%, are

presented two branches of the high-frequency plasma
waves. Here topography fields for this case. The expres-
sions for the fields:

H r = Z(Cs‘]l(}‘sr) + Bs Nl(ksr))’

:_z(c Ji(Agr) + BNy (A1),
3 S

Ez :k__ZAs(CsJO(}“sr)"' BSNO(XSI’)),
3€3 s

)\‘2

E, =y

S

L. (€301 + BNy (1),

S 3
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E, = A, (C.Jy (A1) + B,Ng (4,))
3¢3 s

Fig. 12 shows the topography golf first radial
threads plasma waves, (A; = 1.86) and the waveguide
parameters and plasma: a = 0.6 cm, b = 2.25cm,
®pe = 5.64-10° rad/s, ope = 1.4-10" rad/s. For conven-
ience field analysis are normalized to the maximum
value of H,.

da.u.

_%.so 075 100 125 150 175 200 225
r.cm

a.u,
200 ]
150 1
100:
50 ]
04
50
-1004
-150 1
-200 ]
250 |

050 075 100 125 150 175 200 225
r,cm

Fig. 12. Topography fields for the case 1,= 1.86:
curve 1 in Fig. 9 at o = 4.6:10° rad/s, k; = 2.86.
Parameters of the magnetic field and plasma density
correspond wpe= 5.64-10° rad/s, wye = 1.4-10% rad/s

d.u.

-6 T T T T v T T
050 075 1,00 125 150 175 200 225
r,cm

au.
0,014
0,004

2004 0,01/

002{ E

05 ]
r, cm

050 075 100 125 150 175 200 225
r,cm

Fig. 13. Topography of low frequency fields for the ca-
seterm TEM-wave at the point @ = 9-10° rad/s,
ks = 0.339. The parameters of the magnetic field
and plasma density correspond wpe = 5.64-10° rad/s,
e = 1.4:10" rad/s

This point corresponds to the phase velocity

Lph=2.65-10"" cm / s, which is close to the light velocity
c. As can be seen from figure 13 there are the dominant

ISSN 1562-6016. BAHT. 2015. Ne4(98)

components of the field E, H, and H,. The Umov-
Poynting vector in the z direction for this wave is great
because it is determined by E,H,, H,E, , the first of
which is large.

a.u.
2,54
2.04
1,54
1,04
0,54
0,04
-0.5‘
-1,0 - : : - ; ; -
050 0,75 100 125 150 1,75 200 225
r,cm
a.u.
a.u. 0,04
ER 0,00
4 gy E
H, 0,04 3
3 0,08
20
2 T, cm

050 075 100 125 150 175 200 225 - om
Fig. 14. Topography of low frequency fields for the case
TEM-type wave at the point w = 14-10° rad/s,
ks = 2.294. The parameters of the magnetic field
and plasma density correspond wpe = 5.64-10° rad/s,

one = 1.4:10% rad/s

This point corresponds to the phase velocity
oph=6.1~109 cm /s, which is less than the light velocity
c. As can be seen from Fig. 14 are dominant field com-
ponent H,, H,, H,, E.. The Umov-Poynting vector in the
direction of z for this wave is not small, but significant-
ly less than the point from Fig. 13.
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050 075 1,00 1256 150 175 200 225
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Fig. 15. Topography of fields for high-frequency TEM-
type wave at the point o = 2-10" rad/s, ks = 0.613. The
parameters of the magnetic field and plasma density
correspond wpe = 5.64-10° rad/s, wye = 1.4-10% rad/s
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This point corresponds to the phase velocity
Lpr=3.26-10"" cm/s, which is greater than the light ve-
locity c. As can be seen from Fig. 15 are the dominant
components of the field E,, H, and H,. The Umov-
Poynting vector in the z direction for this wave is great
because it is determined by E,H, H.E, the first of
which is large.

CONCLUSIONS

For carrying out of the further numerical compari-
sons with experimental researches on breakdown of a
mixture of gases by microwave radiation with a
stochastic jumping phase the theoretical researches of
wave dispersive properties of the created coaxial wave-
guide are carried out. Electromagnetic modes of a coax-
ial plasma waveguide in an external magnetic field are
investigated. The existence of quasi TEM-type modes in
a finite-strength magnetic field is demonstrated. It is
shown that this mode transforms into the true
TEM-mode under the limits of infinitely strong and ze-
ros magnetic fields.
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BOJIHBI B KOAKCUAJIBHOM ITJIASMEHHOM BOJIHOBO/JIE B MAT'HUTHOM I10JIE
HU.B. Kapacwv, H.A. 3azpebenvuuii

Jng mpoBeneHys MaNbHEHIINX YHCICHHBIX CPABHEHUH C 3KCIEPHMEHTAIBHBIMU HCCIEIOBAaHUAMU IO IPOOOIO
CMECH Ta30B C IIOMOIIbI0 MUKPOBOJIHOBOTO U3IIyYEHHUSI CO CTOXaCTHMYECKUMH CKaukamu (a3bl IPOBE/ICHBI JIETalb-
Hbl€ TEOPETUYECKUE UCCIICJOBAHMSI AUCIIEPCUOHHBIX CBOMCTB INIA3MEHHOI'O KOAKCHaJIbHOrO BoJdHOBoAA. Mccneno-
BaHBI 3JIEKTPOMATHUTHBIE BOJIHBI, PACIPOCTPAHSIOIUECS B KOAKCUAIbHOM IIJJA3MEHHOM BOJIHOBOJE, TOMEILEHHOM
BO BHEIIHEE MarHUTHoE noJe. IIpoaeMoHCTpupoBaHo Hann4ue pexuMoB kBa3u TEM-Tuna BoJIH B MArHUTHOM I10JI€
KOHEYHOW Benm4uHbI. [TokasaHo, 4To B npenenax 6ECKOHEYHO CHIIBHOTO M HYJIEBOTO MAarHUTHBIX TOJICH CyIIECTBY-
toT TEM-Tuna BonHBL.

XBHUJII B KOAKCIAJIBHOMY IIJIABMOBOMY XBUJIEBOJII B MATHITHOMY IT10OJII
LB. Kapacy, 1.A. 3azpedenvnuii

JIo1st mpoBeICHHS MOAANBINNX KUTbKICHUX TOPIBHSHD 3 €KCIIEPUMEHTATBHIUMH JOCIIHPKEHHAMH 3 TIPOOO0I0 CyMirTi
ra3iB 3a JIOMOMOT'OI0 MiKpOXBHJILOBOT'O BHUIIPOMIHIOBAHHS 31 CTOXaCTUYHUMH CTPUOKaMH (a3u MPOBEJICHI JeTaabHi
TEOPETHYHI JTOCIIDKCHHS TUCIIEPCIHHUX BIACTUBOCTEH IIA3MOBOTO KOAKCIAILHOTO XBHIIEBOTY. JlOCIKEHI eIeKT-
POMATHITHI XBHJIi, [0 MOIIUPIOIOTHECSA B KOAKCIAIEHOMY TJIA3MOBOMY XBHUIICBO/II, KA BMIIIIEHO B 30BHIIIIHE MarHi-
THe noJie. [IpogeMoHCTpOBaHa HAsBHICTH peKUMiB KBa3i TEM-Tumy XBUiIb y MarHiTHOMY HOJI CKIHYEHHOT BEJTHYH-
Hu. [TokazaHo, 10 B MeKaX HECKIHUCHHO CHJIBHOTO Ta HYJIbOBOTO MarHITHHX MOJIB iCHYt0Th TEM-TUmy XBuiIi.
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