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A comparison of the mechanism of stabilization of unstable states of physical systems in a rapidly oscillating ex-
ternal field (on example the Kapitsa’s pendulum) with a whirligig type stabilization mechanism is presented in this 
work. It is shown that the whirligig mechanism is more efficient than the stabilization in rapidly changing fields for 
stabilizing unstable states if or when it can be actually used. 
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INTRODUCTION 
At present, the mechanism of stabilization of unsta-

ble states in a variety of physical systems in rapidly 
changing external fields has been well studied and wide-
ly used. Kapitsa works [1, 2] initiated a whole field of 
investigations – the vibrational mechanics. Numerous 
publications dedicated to the description of various 
physical effects observed in this case. Sufficient exam-
ple is the publications [1 - 6]. The most known example 
of stabilization of unstable states with the rapid change 
in the system’s parameters is the stabilization of the 
upper unstable location of a mathematical pendulum by 
rapidly changing the position of its suspension point 
known as the Kapitsa pendulum. The same mechanism 
is the basis of high-frequency radio field pressure forces 
(Gaponov-Miller forces).  

Works [7 - 10] suggest a mechanism to stabilize a 
wide range of unstable physical systems. This mecha-
nism allows to stabilize both classical and quantum sys-
tems. In particular, the possibility of stabilization of a 
radiation flow in plasma and a flow of charged particles 
in plasma has been suggested. The possibility to sup-
press the local instability has been demonstrated using 
the example of the Lorenz system. For quantum systems 
this mechanism is reminiscent of the quantum Zeno 
effect. The main feature of this mechanism is the intro-
duction to a system under stabilization an additional 
degree of freedom. The interaction of this degree of 
freedom with one of the degrees of freedom of an un-
stable system under certain conditions, allows you stabi-
lize the system. These conditions are conveniently de-
scribed using a visual image of a children's toy – whirli-
gig. Let us imagine that we have a real whirligig which 
does not rotate. Its vertical position is unstable. The 
whirligig will fall down during a characteristic time T . 
If we now rotate the whirligig, and the period of its rota-
tion is significantly smaller than T , the vertical position 
of the whirligig is stable. This simple visual image con-
tains two basic characteristics required to implement the 
stabilization mechanisms. Indeed, time of the whirligig 
fall (when it is not running) is convenient to associate 
with the lifetime of the unstable state of the physical 
system under investigation. To make this state stable it 
is necessary to introduce a mechanism similar to the 
rotation of the whirligig. Such a mechanism can be the 
introduction of an additional degree of freedom, which 
effectively interacts with one of the unstable physical 
system’s own degree of freedom.  

At first glance, whirligig mechanism looks equiva-
lent to the mechanism of stabilization in rapidly oscillat-

ing external fields. Indeed, for the whirligig-type stabi-
lization one needs to introduce rapidly changing pro-
cesses (the analogue to whirligig rotation). However, as 
one can see below, in all cases where the principle of 
whirligig can be used, it is more efficient than the stabi-
lization using the rapidly changing external fields. This 
work proves this fact. Here in the second section we 
transform the Kapitsa equations to the form which al-
lows the comparison of the whirligig stabilization 
mechanism with the stabilization mechanism using ex-
ternal rapidly changing fields. 

1. GENERAL CONSIDERATIONS 
At first, let us briefly express some general consid-

erations that allow us to understand the whirligig mech-
anism of stabilization. In most cases, the unstable states 
of dynamic systems are locally characterized by singu-
lar points of "saddle" type. The unstable nodes and fo-
cuses occur much less frequently. Here is the example 
of transforming an unstable point of "saddle" type into 
an elliptical point (to the point of "center" type). Phase 
portraits of the neighborhood of the saddle point are 
shown in Figs. 1,a,b,c.  

 
Fig. 1,a. Phase portrait  

of a singular point  
of the "saddle" type 

 
Fig. 1,b. Phase portrait 

of a singular point  
of the "saddle" type 

Fig. 1,c. Singular point  
of the "saddle" type  
on the phase plane 

 
Fig. 2. Phase portrait 

of a singular point  
of "center" type 

 

The equations in the phase plane, which describe the 
dynamics of phase trajectories in the neighborhood of 
the saddle point, have the form: 

0 1x xγ= ⋅ 1 0x xγ= .                           (1) 
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In most real cases, each of the dependent variables 
in equations (1) is some characteristic a degree of free-
dom of the system under investigation. For example, 
this may be complex amplitudes of interacting nonlinear 
waves. Therefore, in this paper we assume that each of 
these first-order equations describes one of the degrees 
of freedom of the system under investigation. Suppose 
now that we want to transform a neighborhood of a sin-
gular saddle point into the neighborhood, which corre-
sponds to a stable singular point, for example, elliptical 
point (Fig. 2). 

To achieve this, one can do as follows. We introduce 
into the system an additional degree of freedom con-
nected to the one of the degrees of freedom of the un-
stable system. The simplest model that describes the 
dynamics of the system in the vicinity of the saddle 
point after such modification differs from the equation 
(1) only by additional equation: 

0 1 2x x xγ δ= ⋅ + ⋅ ;  1 0x xγ= ;  2 0x xδ= − ⋅ .   (2) 
This new degree of freedom is connected to one of 

the degrees of freedom of the original system by the 
coupling coefficientδ . The system of equations (2) is 
equivalent to the equation of the linear pendulum: 

( )2 2
0 0 0x xδ γ+ − = .                      (3) 

From equation (3) is immediately obvious that as 
soon as the coefficient that describes the connection 
between the degrees of freedom is greater than the in-
stability increment (δ γ> ), an unstable saddle point 
turns into an elliptical point. The phase space, shown on 
Fig. 1,c, became the phase space which is shown on 
Fig. 2. This simple algorithm of transforming the unsta-
ble saddle point into an elliptical point well characteriz-
es the whirligig principle. Indeed, if we do not introduce 
an additional degree of freedom, our system is unstable 
(whirligig falls). Moreover, the characteristic instability 
time ( ~ 1/T γ ) can be associated with the whirligig fall 
time. The inclusion of an additional degree of freedom 
which stabilizes our system is similar to the presence of 
the whirligig rotation. Moreover, the whirligig stabiliza-
tion has not only qualitative but also quantitative analo-
gy. Indeed, for the vertical position of a whirligig to be 
stable, it is necessary that the rotation period is shorter 
than the time of falling. In our model (see equation (3)), 
the system becomes stable if the coupling coefficient 
becomes greater than the instability increment ( δ γ> ). 
Moreover, if the increment of the instability is zero, 
then the system of equations (2) describes oscillations 
with frequency 2 / rotTδ π= . Thus, there are qualitative 
and quantitative similarities between the considered 
mechanism and a mechanism of stabilizing a whirligig’s 
vertical position.  

Let us make the following remark. We are accus-
tomed to the fact that the increase in the number of de-
grees of freedom of a dynamical system leads to tougher 
conditions for the realization of its steady state. Indeed 
assume our physical system is described by the follow-
ing system of equations: 

(Z, t)n nZ F=


 .                              (4) 
The nature of the stability of this system at the se-

lected point of the phase space is described by a linear 

system of equations that describes the dynamics of 
small deviations 0Z Z x= +

 

 : 
ˆ .x Ax=

 

                                   (5) 
In many cases, the coefficients of the matrix can be 

considered constant. Then, to determine the type of the 
singular point of the system (5), we must find the roots 
of the characteristic equation: 

1 2
0 1 2 1... 0.n n n

n nα λ α λ α λ α λ α− −
−+ + + + + =   (6) 

Rause-Gurvitz criterion states that the higher order 
of the equations makes it more difficult to satisfy the 
conditions of stability for this system. In the example 
above we have increased the number of degrees of free-
dom, but have achieved the opposite result. It may look 
like an exceptional case. However, it is not true. [7 - 11] 
contain numerous examples showing how the introduc-
tion of an additional degree of freedom to complex sys-
tems such as those that describe the stabilization of ra-
diation fluxes in the plasma can also lead to a stabiliza-
tion of unstable states. This result echoes the result pro-
vided in Haken’s book [12] about the role of the order 
parameters. Thus, the introduction of an additional de-
gree of freedom is an analogue of the Haken’s parame-
ter of order. 

2. DYNAMICS OF KAPITSA PENDULUM 
Let’s briefly provide the main results that character-

ize the dynamics of the Kapitsa pendulum. Such pendu-
lum is described by a mathematical pendulum with pe-
riodically changed parameters: 

( )( )2 1 cos sin 0x t xε ω+Ω + ⋅ = .           (7) 
For small values of the angle ( 1x ϕ≡ << ), this equa-

tion is the Mathieu equation. The solution of equation 
(7) is studied in all areas of the parameters. We are in-
terested in the area of non-resonant parameters. We as-
sume that the frequency of parametric excitation is large 
(ω >> Ω ), and the parameter ε  has no constrains. The 
stability of the upper position of a mathematical pendu-
lum can be achieved in this parameters area. It is well 
known (e.g., [3]) that the dynamics of such nonlinear 
oscillator is determined by the effective potential: 

2( ) cos( ) sin ( )U x x xα= − + ⋅   ,            (8) 

where − 
2 2

2
a
l

ωα    = ⋅   Ω   
; l  − length of the pendulum; 

l a>>  − oscillation amplitude of the point of suspen-
sion; /l gΩ =  − the frequency of the linear oscilla-
tion of the pendulum; ω  − the frequency of the oscilla-
tion of the point of suspension.  

Stable position corresponds to the minimum of the 
potential (8). Fig. 3 shows the potential in the case when 
the conditions of the top position stability of the pendu-
lum are not satisfied. One can see that the stable posi-
tion is the lowest position of the pendulum. However, if 
the oscillation frequency of the suspension point or its 
oscillation amplitude increases, the upper position 
( x ϕ π≡ = ) may become stable too. This case is shown 
on Fig. 4. One can see that the upper position of the 
pendulum ( 3.14x ϕ≡ = ) gets local minima. The loca-
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tion of the pendulum is stable at these points. These 
results are well known before (see, e.g., [1 - 5]). 

 
Fig. 3. The effective potential at 0.5α =  

 
Fig. 4. The effective potential at 1.2α =  

The mathematical model of the Kapitsa pendulum 
inconvenient for comparison with other stabilization 
mechanisms in the form presented above. Therefore, for 
convenience of comparison, we somewhat simplified 
the model (7). Namely, we are interested in the dynam-
ics in the vicinity of the unstable position of the pendu-
lum only, i.e. in the vicinity of the point x π= . The 
dynamics of Kapitsa pendulum in this region of angles 
can be described by the system of equations: 

( )2 2
0 0 0 1 0cosx x t x x xε ω−Ω = Ω ⋅ = ⋅ ,        (9) 

2
1 1 0x xω+ = ,    ( ) ( )2

1 10 ; 0 0x xε= Ω = . 
The first equation of the system (9) describes the 

dynamics of the Kapitsa pendulum in the vicinity of an 
unstable equilibrium point. However, we have added to 
this equation the equation of a linear oscillator, which 
oscillations together with initial conditions describe the 
vibrations of the suspension point of the pendulum. 
Such modification is useful for comparison of the 
known mechanism of the Kapitsa pendulum stabiliza-
tion with the mechanism, which uses the principle of 
whirligig. The system of equations (9) describes the 
movement in constant (in time) potential and in the ex-
ternal rapidly oscillating field. It is convenient to rewrite 
it as: 

( )cos ( , )Nx x x f xε ω τ τ− = ⋅ ≡ ,       (10) 

here 2( ) / 2U x x= − , tτ = Ω⋅ ; 

/x dx dτ≡ ( )cos ( , )t x f x tε ω ⋅ ≡ ; 

/ 1Nω ω= Ω >> . 
Then, using standard averaging procedure (see, for 

example, [3]), we find the following expression for the 
effective potential, which determines the dynamics of 
the pendulum in the vicinity of its upper unstable posi-
tion: 

2
2

2

1( )
2 2eff

N

xU x f
ω

= − + ; 

2 2 2 2 2

2 2( ) 1
2 4 2 2eff

N N

x x xU x ε ε
ω ω

 ⋅
= − + = − − 

 
.      (11) 

The steady state corresponds to the minimum of this 
potential. The stability condition has the form: 

2 22 1.Nε ω> >>                        (12) 
When expressed in familiar variables it transforms to 

well-known expression: 2 ;l
a

ω > ⋅Ω⋅ /l gΩ = .  By 

definition / 1Nω ω= Ω >>  is a large parameter. 
Thus, we obtained known Kapitsa result on stabili-

zation of the upper unstable position of the pendulum. 
The stabilization was achieved by applying external 
influence to the parameters of the pendulum. At the 
same time, if we consider the system (9), we can say 
that stabilization mechanism, in some sense is a nonlin-
ear mechanism. Indeed, if we have kept the reverse in-
fluence of the pendulum dynamics on the oscillator, 
which causes fluctuations in the point of suspension, 
then it would be a non-linear system. However, we ig-
nored this bond. 

As a result, the first equation (9) remains linear 
equation with parameters subjected to external high-
frequency disturbances. Note also that equation (10) 
shows the parameters under which the external high-
frequency perturbations can change the character of the 
unstable saddle point. Indeed, if we drop the right side 
of the system (10), the remaining part of this equation 
describes the dynamics in a neighborhood of a singular 
unstable point of "saddle" type. The presence of external 
high-frequency perturbations (right-hand side of equa-
tion (10)) with the parameters defined by the inequality 
(12) transforms an unstable singular point of "saddle" 
type to an elliptic point. Below we show that there is 
another opportunity to change the nature of an unstable 
point turning it into a stable singular point. To achieve 
this let’s rewrite equation (10) without the right side: 

0 1x x= Ω⋅ 1 0x x= Ω⋅ .                    (13) 
These equations describe the unstable state of "sad-

dle" type. Let’s modify this system of equations assum-
ing that the variable of the first equation in (13) is line-
arly connected to some other (additional) variable 2x : 

0 1 2 ,x x xδ= Ω⋅ + ⋅  

1 0x x= Ω⋅ ,   2 0x xδ= − ⋅ ,                   (14) 
where δ − is the coefficient of the connection. 

The system (14) is equivalent to the equation of the 
linear pendulum: 

( )2 2
0 0 0.x xδ+ −Ω =

                   
 (15) 

We have already dealt with such equation (see equa-
tion (2) and (3)). From (15) follows that, in order to 
stabilize the unstable upper position of the pendulum, it 
is necessary to satisfy the conditionδ > Ω  only. 

This stabilization condition is much weaker than the 
stabilization as the result of rapidly changing fields (12). 

CONCLUSIONS 
Is was shown above, that the usage of the whirligig 

principle allows to stabilize an unstable state in much 
simple and easier way than it can be achieved using 
external rapidly oscillating fields. However, it should be 
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understood that the whirligig principle is not always 
possible to realize. For example, one can hardly imagine 
a mathematical Kapitza pendulum, oscillation of which 
somehow connected with some other degree of freedom 
and the frequency of these oscillations is large than the 
fundamental frequency of the pendulum. However, in 
many other cases (see, for example, [7-11]) it would be 
easy to achieve. Let us formulate the main conclusions 
of this work: 
1. The principle of whirligig stabilization of unstable 

states cannot be reduced to the stabilization mecha-
nism, based on usage an external rapidly oscillating 
fields. 

2. In all cases where the whirligig principle can be 
used for stabilization of unstable states this mecha-
nism is more effective than other stabilization 
mechanisms. 
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МАЯТНИК КАПИЦЫ И ПРИНЦИП ЮЛЫ 
В.А. Буц 

Дано сравнение механизма стабилизации неустойчивых состояний физических систем во внешнем быст-
роосциллирующем поле (на примере маятника Капицы) с механизмом стабилизации юлы. Показано, что в 
тех случаях, когда для стабилизации неустойчивых состояний может быть использован принцип юлы, он 
оказывается более эффективным, чем механизм стабилизации в быстроменяющихся полях. 

МАЯТНИК КАПИЦІ ТА ПРИНЦИП ДЗИҐИ 
В.О. Буц 

Дано порівняння механізму стабілізації нестійких станів фізичних систем у зовнішньому швидкоосци-
люючому полі (на прикладі маятника Капиці) з механізмом стабілізації дзиґи. Показано, що в тих випадках, 
коли для стабілізації може бути використаний принцип дзиґи, він є більш ефективним, ніж механізм стабілі-
зації в швидкозмінних полях. 

 


