
ISSN 1562-6016. ВАНТ. 2015. №4(98) 282 
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HIGH- AND LOW-FREQUENCY FORCING 
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The bistablity onset due to the interaction of high- to low-frequency oscillations in the Duffing oscillator is con-
sidered. It is shown that such interaction results in arising of additional bistable states, which has a lower threshold 
for bistability with respect to the forcing amplitude as compared to the harmonically forced oscillator. This phenom-
enon is illustrated by considering two examples, including the oscillator with a tandem low- and high-frequency 
external forcing, and the harmonically forced oscillator with a modulated natural frequency. It is shown that three 
frequency resonances are responsible for the arising of the additional bistable states. The corresponding threshold 
values of the forcing amplitudes are found analytically. A comparative analysis of different types of bistable states 
in the oscillator is presented as well. 
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INTRODUCTION 
Bistability plays a key role in the dynamics of dif-

ferent electronic, optical, mechanical devices [1 - 3]. 
For nonlinear systems with external excitation, the bi-
stability is a threshold phenomenon requiring some criti-
cal value of the external forcing amplitude for its arising 
[4, 5]. In the present paper, we will show that the thresh-
old for bistability can be effectively controlled by apply-
ing an additional low-frequency external forcing. Be-
sides, the interaction of the high- to low-frequency oscil-
lations results in arising of additional bistable states.  

We consider the Duffing oscillator with a combined 
high- and low-frequency excitation as the mathematical 
model to illustrate this finding. The high-frequency 
forcing provides a resonant excitation of the oscillator 
when the conditions of the principal resonance are ful-
filled. Two ways of the application of the low-frequency 
forcing to the oscillator is considered. The first one is an 
additive impact of such forcing on the oscillator in the 
combination with the high-frequency forcing. The sec-
ond way consists in a low-frequency modulation of the 
natural frequency of the oscillator.  

We consider the conditions for the bistability on set 
due to the interaction of high- to low-frequency oscilla-
tions. Such interaction manifests itself due to three fre-
quency resonances. The application of the secondary 
averaging techniques has allowed us to obtain analytical 
conditions for the formation of bistable states and to 
study their properties in details. 

The paper is organized as follows. In Section 2, the 
case of the tandem low- and high-frequency external 
forcing of the oscillator is considered. Section 3 deals 
with the case of the harmonically forced oscillator with 
a low-frequency modulation of its natural frequency. 
Section 4 summarizes the obtained results. 

 

1. OSCILLATOR WITH THE ADDITIVE 
FORCING 

We consider the Duffing oscillator, which is sub-
jected to both high- and low-frequency external forcing 
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Here x is the generalized coordinate, ω0 is the natu-
ral frequency of the oscillator, α > 0 is the damping 
coefficient, γ > 0 is the coefficient of a cubic nonlineari-
ty, F and N are the amplitudes of the external forcing 
with the corresponding frequencies and Ω. Hereinafter, 
the principal resonance is considered, which occurs 
when  

ωe ≈ ω0 .   (2) 
The properties of the harmonically forced Duffing 

oscillator (1) when N=0 are well known [4, 5]. Such 
oscillator demonstrates a bistable behavior, when the 
amplitude F exceeds some critical value Fcrp, which 
reads  
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In the case when the amplitude N≠ 0, the following 
three frequency resonances can occur in (1): 

,0 en ωω −≈Ω⋅    (4) 

with  n= 1, 2.  
Similar cases of the three frequency interactions 

have been studied so far from the point of view of the 
transitions to chaos and excitation of parametric oscilla-
tions [6 - 9]. Such resonances can also lead to the ap-
pearance of bistability [10]. 

In order to describe the behavior of the oscillator (1) 
in the vicinity of the resonances (4), the secondary aver-
aging technique can be used [11]. The application of 
this technique leads to the following averaged equations 
for the resonance with n=1:
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The averaged equations for the case n=2 are: 
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The amplitude B and the phase ψ are related with the 
initial coordinate x by the following relations:  
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with 
∆++Ω= /)cos( RtnBU ψ ,   (8) 
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Analysis of the stationary states of (5) and (6) shows 

that these systems have bistable states. For the system 
(5), the condition for the bistability is 
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and for the system (6) this condition is as follows 

.32
3

8)(
2/15

0
2

22









Ω
≡>

β
α

β
αω

crsFNFN  (10) 

Thus, these bistable states appear only as a result of 
the interaction of the high- and low-frequency oscilla-
tions. This conclusion follows from the fact that the 
threshold for the bistable states to arise is determined by 
the product of the external forcing amplitudes. Note, 
that for the resonance with n=1 the bistability arises 
with the simultaneous presence of the quadratic and 
cubic nonlinearities in the oscillator (1). In opposite to 
this, for the resonance with n=2, the quadratic nonline-
arity is not required for the bistability onset.  

 
Fig. 1. Boundaries of the bistability arising for the har-
monically (dashed line) and the bi-harmonically (solid 
curves) forced oscillator for ω0=1, α=0.001; Ω=0.05, 

γ=0.001; σ=0.001 
The conditions for the bistability appearance are il-

lustrated in Fig. 1 on the parameter plane with the nor-
malized amplitudes F and N as the coordinates. The 
value of Fcrp given by (3) and σω /2 3

00 Ω=N  have 
been used for the normalization. Here the straight line 
F/Fcrp=1 divides the parameter plane on two regions. 
Bistable states of the harmonically forced oscillator 
(N=0) appear, if the parameters are chosen from the 
region above this straight line. Bistable states due to the 
three frequency resonance (4) with n=1 and n=2 arise in 

the areas above the curve 2 and curve 3, correspondent-
ly. It is important to note, that according to Fig. 1 the 
threshold for the bistability onset with respect to the 
amplitude of the high-frequency forcing in the three-
frequency resonances can be much lower as compared 
to that for the two-frequency resonance (2). Thus, the 
additional low-frequency forcing enables for an efficient 
control of the threshold for bistability.  

An example of the resonance curves for the three-
frequency resonance with n=1 is shown in Fig. 2 for 
different values of the low-frequency amplitude N and 
for other parameters corresponding to Fig. 1. Here the 
high-frequency amplitude F is chosen to be equal Fcrp/2. 
It means that the bistability cannot arise in the case of 
the harmonically forced oscillator. The bistability ob-
served on the resonance curves in this figure is due to 
the interaction of the high- to low-frequency oscilla-
tions.  

 
Fig. 2. Resonance curves for the three-frequency reso-

nance with n=1 for different values of the low-frequency 
amplitude: N=Ncrp/2 (1); N=2Ncrp (2); N=2.5Ncrp (3). 

Solid curves show stable states, and dashed curves show 
unstable ones 

 

2. OSCILLATOR WITH MODULATED 
NATURAL FORCING 

In this section we consider the harmonically driven 
Duffing oscillator with the natural frequency, which is 
slowly varying in time: 
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Here )cos1()( 0 tmt Ω+=ωω  is the natural frequen-
cy time variation function, where m<<1 is the modula-
tion coefficient, ω0is the mean value of the frequency 
and Ω is the frequency of the modulation which is small 
as compared to ω0. As in the previous section we study 
the resonant excitation of the oscillator by the external 
harmonic force at the frequency ωe, when the condition 
(2) holds. In opposite to (1), we do not include in (11) 
the quadratic nonlinear term, since it does affect here 
the oscillator dynamics.  

In addition to the two-frequency resonance (2), one 
of the three-frequency resonances (4) with n=1 also 
takes place in (11). It is possible to show that for this 
resonance, the oscillator dynamics is described by the 
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following averaged equations with respect to the ampli-
tude B and the phase ψ of the excited oscillations:  
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From the above system, we obtain that the bistability 
arises if the following threshold condition is fulfilled: 
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where Fcrp is defined by the expression (3). 
It should be pointed out that this bistable state also 

appears only as a result of high- to low-frequency inter-
action. This follows from the fact that the threshold for 
the bistabilities (13) is defined by the product of the 
high-frequency forcing amplitude and the modulation 
coefficient. 

Let us compare the thresholds (3) and (13) obtained, 
respectively, for the two-frequency resonance (2) and 
for the three-frequency resonance. For this, we rewrite 
(13) in the following form 
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Since Ω<<1, the above condition can be satisfied if 
the modulation coefficient m is small, that means that 
for the bistability to arise due to the resonance (4), the 
amplitude of the external forcing amplitude can be 
smaller than Fcrp. This condition of the bistability onset 
is illustrated in Fig. 3 on the parameter plane with the 
coordinates F/Fcrp and m. The straight line F/Fcrp=1 
(line 1 in Fig. 3) divides the parameter plane into two 
regions. When the oscillator parameters are taken from 
the region above this line, the bistability can arise with 
the presence of only high-frequency external harmonic 
forcing without the oscillator natural frequency modula-
tion. In the region below this line such bistability cannot 
arise. 

The borderline of the bistability appearance defined 
by the ratio (14) is shown by curve 2 in Fig. 3.  

 
Fig. 3. Bifurcation diagram on the parameter plane the 

normalized forcing amplitude and the coefficient of 
modulation for the resonance (2) and for the resonance 
(4) with n=1 for the normalized modulation frequency 

Ω=0.01 
The parameter plane shows that the threshold value 

of F for this bistability can be lowered several times 
with respect to Fcrp even with a small modulation coef-

ficient. For example, with m=0.1 the threshold is low-
ered by the factor 2.5. 

An example of the frequency response curve with 
the modulated natural frequency of the oscillator is 
given in Fig. 4. The curve is plotted for F=0.8Fcrp. The 
peak 1 corresponds to the two-frequency resonance (2). 
There is no bistability on this resonance due to the se-
lected value of F. Bistability arises here (peak 2 on the 
resonance curve) due to the three-frequency resonance 
(4), since it requires a lower value of the forcing ampli-
tude for this bistability onset. By increasing the ampli-
tude over Fcrp, it is possible to have a bistability at the 
peak (1) of the resonance curve as well. It means that a 
pair of bistable states can exists in such oscillator. Each 
of the states can be controlled independently. It is possi-
ble to show mathematically that the distance between 
the resonances on the frequency scale of the external 
forcing is approximately equal to the frequency of mod-
ulation. 

 
Fig. 4. Frequency response curve of the  

oscillator with modulated natural frequency. Solid line 
corresponds to stable states, and dashed line to saddle 

ones. F/Fcrp= 0.8, m=0.1, α = 0.001, γ=1, Ω =0.01 

CONCLUSIONS 
 

Thus, we have demonstrated that the interaction of 
high- to low-frequency oscillations in the Duffing oscil-
lator leads to arising of additional bistable states. The 
threshold for such additional states can be lower as 
compared to the bistable state that is attributed to the 
harmonically forced Duffing oscillator. We have illus-
trated the above findings by two examples, including 
the oscillator with a tandem low- and high-frequency 
external forcing, and the harmonically forced oscillator 
with modulated natural frequency. In the both cases, 
three frequency resonances are responsible for the aris-
ing of the additional bistable states. The application of 
the secondary averaging technique has allowed us to 
obtain analytical conditions for the bistability onset due 
to such resonances. The obtained results are important 
for applications. They indicate, for example, that the 
number of bistable states can be increased just by apply-
ing a low frequency forcing to the oscillator. The low-
frequency forcing also enables for efficient control of 
the threshold for the bistability.  
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БИСТАБИЛЬНОСТЬ В ОСЦИЛЛЯТОРЕ ДУФФИНГА ПРИ ОДНОВРЕМЕННОМ 

ВЫСОКОЧАСТОТНОМ И НИЗКОЧАСТОТНОМ ВОЗДЕЙСТВИИ 
 

А.Ю. Немец, Д.М. Ваврив  
Рассматривается случай возникновения бистабильности в осцилляторе Дуффинга в результате взаимо-

действия высокочастотных и низкочастотных колебаний. Показано, что такое взаимодействие приводит к 
возникновению дополнительных бистабильных состояний, обладающих меньшим пороговым значением 
амплитуды внешней силы по сравнению с гармонически возбуждаемым осциллятором. Это явление проил-
люстрировано на примере двух случаев: возбуждения осциллятора одновременным внешним воздействием 
высокочастотных и низкочастотных колебаний, и гармонически возбуждаемого осциллятора с модулиро-
ванной собственной частотой. Показано, что дополнительные бистабильные состояния возникают в резуль-
тате трехчастотного взаимодействия. Аналитически определены соответствующие пороговые значения ам-
плитуды внешней силы, воздействующей на осциллятор. Приведен сравнительный анализ различных типов 
бистабильных состояний в осцилляторе.   

БІСТАБІЛЬНІСТЬ В ОСЦИЛЯТОРІ ДУФФІНГА ПРИ ОДНОЧАСНОМУ  
ВИСОКОЧАСТОТНОМУ ТА НИЗЬКОЧАСТОТНОМУ ВПЛИВІ 

А.Ю. Німець, Д.М. Ваврів 
Розглянуто випадок виникнення бістабільності в осциляторі Дуффінга в результаті взаємодії високочас-

тотних та низькочастотних коливань. Показано, що така взаємодія призводить до появи додаткових бістабі-
льних станів, що мають меншу величину порогового значення амплітуди зовнішньої сили в порівнянні з 
гармонічно збуджуваним осцилятором. Це явище проілюстровано на прикладі двох випадків: збудження 
осцилятора одночасним зовнішнім впливом високочастотних та низькочастотних коливань, та гармонічно 
збуджуваного осцилятора з модульованою власною частотою. Показано, що додаткові бістабільні стани 
виникають в результаті трьохчастотної взаємодії. Аналітично розраховані відповідні порогові значення амп-
літуди зовнішньої сили, що впливає на осцилятор. Приведено порівняльний аналіз різноманітних типів біс-
табільних станів в осциляторі. 
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