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The bistablity onset due to the interaction of high- to low-frequency oscillations in the Duffing oscillator is con-
sidered. It is shown that such interaction results in arising of additional bistable states, which has a lower threshold
for bistability with respect to the forcing amplitude as compared to the harmonically forced oscillator. This phenom-
enon is illustrated by considering two examples, including the oscillator with a tandem low- and high-frequency
external forcing, and the harmonically forced oscillator with a modulated natural frequency. It is shown that three
frequency resonances are responsible for the arising of the additional bistable states. The corresponding threshold
values of the forcing amplitudes are found analytically. A comparative analysis of different types of bistable states

in the oscillator is presented as well.
PACS: 06.30.-k

INTRODUCTION

Bistability plays a key role in the dynamics of dif-
ferent electronic, optical, mechanical devices [1 - 3].
For nonlinear systems with external excitation, the bi-
stability is a threshold phenomenon requiring some criti-
cal value of the external forcing amplitude for its arising
[4, 5]. In the present paper, we will show that the thresh-
old for bistability can be effectively controlled by apply-
ing an additional low-frequency external forcing. Be-
sides, the interaction of the high- to low-frequency oscil-
lations results in arising of additional bistable states.

We consider the Duffing oscillator with a combined
high- and low-frequency excitation as the mathematical
model to illustrate this finding. The high-frequency
forcing provides a resonant excitation of the oscillator
when the conditions of the principal resonance are ful-
filled. Two ways of the application of the low-frequency
forcing to the oscillator is considered. The first one is an
additive impact of such forcing on the oscillator in the
combination with the high-frequency forcing. The sec-
ond way consists in a low-frequency modulation of the
natural frequency of the oscillator.

We consider the conditions for the bistability on set
due to the interaction of high- to low-frequency oscilla-
tions. Such interaction manifests itself due to three fre-
quency resonances. The application of the secondary
averaging techniques has allowed us to obtain analytical
conditions for the formation of bistable states and to
study their properties in details.

The paper is organized as follows. In Section 2, the
case of the tandem low- and high-frequency external
forcing of the oscillator is considered. Section 3 deals
with the case of the harmonically forced oscillator with
a low-frequency modulation of its natural frequency.
Section 4 summarizes the obtained results.

1. OSCILLATOR WITH THE ADDITIVE
FORCING

We consider the Duffing oscillator, which is sub-

jected to both high- and low-frequency external forcing
d?x dx
dt—2+w§x:—2aa—yx3—ox2+ 1)

+ F cosa,t + N cosQt.
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Here x is the generalized coordinate, w, is the natu-
ral frequency of the oscillator, >0 is the damping
coefficient, y > 0 is the coefficient of a cubic nonlineari-
ty, F and N are the amplitudes of the external forcing
with the corresponding frequencies and Q. Hereinafter,
the principal resonance is considered, which occurs
when

We R @ . 2

The properties of the harmonically forced Duffing
oscillator (1) when N=0 are well known [4, 5]. Such
oscillator demonstrates a bistable behavior, when the
amplitude F exceeds some critical value Fc,, which

reads
]_6 1/2
aQ, [N
= e| e |, (3
crp 3 (\/57}
In the case when the amplitude N# 0, the following

three frequency resonances can occur in (1):
n-Qr o, -a,, 4)

with n=1, 2.

Similar cases of the three frequency interactions
have been studied so far from the point of view of the
transitions to chaos and excitation of parametric oscilla-
tions [6 - 9]. Such resonances can also lead to the ap-
pearance of bistability [10].

In order to describe the behavior of the oscillator (1)
in the vicinity of the resonances (4), the secondary aver-
aging technique can be used [11]. The application of
this technique leads to the following averaged equations
for the resonance with n=1:

B _ —aB - sin
dt 4Qw, v
(®)
dy 2 oNF
B——=B(A- - cosy,
dt (A=/B°) 4Qw, v
2 2 3
where A'= o, — @, —Q - Zﬂz': - 2/3':' p=r
4w;Q) o 8w,
The averaged equations for the case n=2 are:
2
d—B:—aB—'BFNssinz//, (6)
dt 4Qm,
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The amplitude B and the phase y are related with the
initial coordinate x by the following relations:

x =U cos .t +V sin wet+ﬁzcoth, )
@
o _ Ve, sinot +Vao, cosa,t — gsin Qt,
dt o
with
U =Bcos(nQt+y)+R/A, (8)

V =Bsin(nQt + ).
Analysis of the stationary states of (5) and (6) shows
that these systems have bistable states. For the system
(5), the condition for the bistability is

8Qa)éa [205\/5]1/2 9)

NF >(N|:)crslE 30 ,B

and for the system (6) this condition is as follows

5 1/2
N2F>(N2F)0r5258§2“;“[2“fJ, (10)

Thus, these bistable states appear only as a result of
the interaction of the high- and low-frequency oscilla-
tions. This conclusion follows from the fact that the
threshold for the bistable states to arise is determined by
the product of the external forcing amplitudes. Note,
that for the resonance with n=1 the bistability arises
with the simultaneous presence of the quadratic and
cubic nonlinearities in the oscillator (1). In opposite to
this, for the resonance with n=2, the quadratic nonline-
arity is not required for the bistability onset.

n
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Fig. 1. Boundaries of the bistability arising for the har-

monically (dashed line) and the bi-harmonically (solid

curves) forced oscillator for wy=1, a=0.001; Q2=0.05,
y=0.001; 6=0.001

The conditions for the bistability appearance are il-
lustrated in Fig. 1 on the parameter plane with the nor-
malized amplitudes F and N as the coordinates. The
value of F, given by (3) and N, =2Qw;/c have

been used for the normalization. Here the straight line
F/Fp=1 divides the parameter plane on two regions.
Bistable states of the harmonically forced oscillator
(N=0) appear, if the parameters are chosen from the
region above this straight line. Bistable states due to the
three frequency resonance (4) with n=1 and n=2 arise in
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the areas above the curve 2 and curve 3, correspondent-
ly. It is important to note, that according to Fig. 1 the
threshold for the bistability onset with respect to the
amplitude of the high-frequency forcing in the three-
frequency resonances can be much lower as compared
to that for the two-frequency resonance (2). Thus, the
additional low-frequency forcing enables for an efficient
control of the threshold for bistability.

An example of the resonance curves for the three-
frequency resonance with n=1 is shown in Fig. 2 for
different values of the low-frequency amplitude N and
for other parameters corresponding to Fig. 1. Here the
high-frequency amplitude F is chosen to be equal Fe/2.
It means that the bistability cannot arise in the case of
the harmonically forced oscillator. The bistability ob-
served on the resonance curves in this figure is due to
the interaction of the high- to low-frequency oscilla-
tions.

B?

7
N xig” '
Fig. 2. Resonance curves for the three-frequency reso-
nance with n=1 for different values of the low-frequency
amplitude: N=Ngrp/2 (1); N=2N¢rp (2); N=2.5N, (3).
Solid curves show stable states, and dashed curves show
unstable ones

2. OSCILLATOR WITH MODULATED
NATURAL FORCING

In this section we consider the harmonically driven
Duffing oscillator with the natural frequency, which is
slowly varying in time:

d’x dx 4
—+ o (t)X=-2a——-"—F cosw,t -
a0V a e

Here w(t) = w,(1+mcosQt) is the natural frequen-
cy time variation function, where m<<1 is the modula-
tion coefficient, wgis the mean value of the frequency
and Q is the frequency of the modulation which is small
as compared to wp. As in the previous

hl 2

(11)

section we study
the resonant excitation of the oscillator by the external
harmonic force at the frequency «,, when the condition
(2) holds. In opposite to (1), we do not include in (11)
the quadratic nonlinear term, since it does affect here
the oscillator dynamics.

In addition to the two-frequency resonance (2), one
of the three-frequency resonances (4) with n=1 also
takes place in (11). It is possible to show that for this
resonance, the oscillator dynamics is described by the
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following averaged equations with respect to the ampli-
tude B and the phase  of the excited oscillations:

d—B:—aB— mF

dt 8w, 0

e

siny »

(12)
mF
8w,
where A'= @, -, -Q-2pR*IQ%, B=3y/8w, -
From the above system, we obtain that the bistability
arises if the following threshold condition is fulfilled:
LU= (13)

BZ—Z’:B(A'—/&BZ)— cosy »

where Fq, is defined by the expression (3).

It should be pointed out that this bistable state also
appears only as a result of high- to low-frequency inter-
action. This follows from the fact that the threshold for
the bistabilities (13) is defined by the product of the
high-frequency forcing amplitude and the modulation
coefficient.

Let us compare the thresholds (3) and (13) obtained,
respectively, for the two-frequency resonance (2) and
for the three-frequency resonance. For this, we rewrite
(13) in the following form
F S 4Q

F m

crp

(14)

Since Q<<1, the above condition can be satisfied if
the modulation coefficient m is small, that means that
for the bistability to arise due to the resonance (4), the
amplitude of the external forcing amplitude can be
smaller than F¢,,. This condition of the bistability onset
is illustrated in Fig. 3 on the parameter plane with the
coordinates F/F¢, and m. The straight line F/F¢,=1
(line 1 in Fig. 3) divides the parameter plane into two
regions. When the oscillator parameters are taken from
the region above this line, the bistability can arise with
the presence of only high-frequency external harmonic
forcing without the oscillator natural frequency modula-
tion. In the region below this line such bistability cannot
arise.

The borderline of the bistability appearance defined
by the ratio (14) is shown by curve 2 in Fig. 3.

F/Ferp

a

0 ‘ U“D2 : D,‘EIA m‘ D“UE : D,iDB ‘ o1
Fig. 3. Bifurcation diagram on the parameter plane the
normalized forcing amplitude and the coefficient of
modulation for the resonance (2) and for the resonance
(4) with n=1 for the normalized modulation frequency

0Q=0.01

The parameter plane shows that the threshold value
of F for this bistability can be lowered several times
with respect to F¢, even with a small modulation coef-
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ficient. For example, with m=0.1 the threshold is low-
ered by the factor 2.5.

An example of the frequency response curve with
the modulated natural frequency of the oscillator is
given in Fig. 4. The curve is plotted for F=0.8Fy,. The
peak 1 corresponds to the two-frequency resonance (2).
There is no bistability on this resonance due to the se-
lected value of F. Bistability arises here (peak 2 on the
resonance curve) due to the three-frequency resonance
(4), since it requires a lower value of the forcing ampli-
tude for this bistability onset. By increasing the ampli-
tude over Fyp, it is possible to have a bistability at the
peak (1) of the resonance curve as well. It means that a
pair of bistable states can exists in such oscillator. Each
of the states can be controlled independently. It is possi-
ble to show mathematically that the distance between
the resonances on the frequency scale of the external
forcing is approximately equal to the frequency of mod-
ulation.

0,018

0,014
0.01
0,006

0,002

-0,005 0,005 0,015
Ao

Fig. 4. Frequency response curve of the
oscillator with modulated natural frequency. Solid line
corresponds to stable states, and dashed line to saddle

ones. F/F¢p=0.8, m=0.1, = 0.001, y=1, Q =0.01

CONCLUSIONS

Thus, we have demonstrated that the interaction of
high- to low-frequency oscillations in the Duffing oscil-
lator leads to arising of additional bistable states. The
threshold for such additional states can be lower as
compared to the bistable state that is attributed to the
harmonically forced Duffing oscillator. We have illus-
trated the above findings by two examples, including
the oscillator with a tandem low- and high-frequency
external forcing, and the harmonically forced oscillator
with modulated natural frequency. In the both cases,
three frequency resonances are responsible for the aris-
ing of the additional bistable states. The application of
the secondary averaging technique has allowed us to
obtain analytical conditions for the bistability onset due
to such resonances. The obtained results are important
for applications. They indicate, for example, that the
number of bistable states can be increased just by apply-
ing a low frequency forcing to the oscillator. The low-
frequency forcing also enables for efficient control of
the threshold for the bistability.
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BUCTABMWJIBHOCTDB B OCHUJIJIATOPE 1Y ®®UHI'A ITPU OJJTHOBPEMEHHOM
BBICOKOYACTOTHOM M HU3KOYACTOTHOM BO3JIENCTBUA

A.JO. Hemey, /.M. Baspus

PaccmatpuBaercst cirydaif BOSHUKHOBEHHUS OMcTabmiabHOCTH B ocummriTope Jyddunra B pesynpraTe B3anmo-
JIEHCTBUS BBICOKOYACTOTHBIX M HU3KOYACTOTHBIX KoyrebaHumil. [lokazaHo, 9TO Takoe B3aMMOAEWUCTBHE MPUBOIUT K
BO3HHKHOBEHHIO JOMONHUTEIBHBIX OMCTAOMIIBHBIX COCTOSHUH, O0NaJaroInX MEHBIINM MOPOTOBBIM 3HadYeHHUEM
aMIUTUTYABI BHEITHEH CHIIBI IO CPAaBHEHHUIO C TAPMOHMYECKH BO30YKIaeMBIM OCHMWJUIITOPOM. DTO SBICHUE TPOII-
JIOCTPUPOBAHO HA MPHUMEPE OBYX CIydaeB: BO3OYKICHUS OCIIUUIITOPA OAHOBPEMEHHBIM BHEIIHUM BO3CHCTBHEM
BBICOKOYACTOTHBIX M HH3KOYaCTOTHBIX KOJEOaHW, W TAPMOHHYECKH BO30YKIAeMOTO OCIHJUIATOpPA ¢ MOAYIHPO-
BaHHOW cOOCTBEHHOH yacToTol. [TlokazaHO, YTO JOMOJHUTEIbHBIE OMCTAOMIbHBIE COCTOSIHHUS BO3HUKAIOT B PE3YIlb-
TaTe TPEXUACTOTHOIO B3aUMOJECUCTBUSA. AHAIUTHUECKU OMpPEENICHB COOTBETCTBYIOIINE IIOPOrOBbIE 3HAUEHUS aM-
IUIUTYZAB! BHEIIHEN CUJIbI, BO3JIECUCTBYIOIIEH Ha OcLMUIATOP. IIpuBeieH CpaBHUTEIIBHBIN aHAIU3 PA3JIMYHBIX TUIIOB
OHCTaOUIIBHBIX COCTOSIHUM B OCIAIUIATOPE.

BICTABIUIBHICTB B OCHUJIATOPI Y ®PIHI'A ITPU OJHOYACHOMY
BUCOKOYACTOTHOMY TA HU3bKOYACTOTHOMY BIIVIMBI

A.JO. Himeuyn, /.M. Baepis

PosrisiHyTo BUNamoK BUHUKHEHHS 0icTabimbHOCTI B ociuiaTopi Ayddinra B pe3ynapTaTi B3aeMOAii BUCOKOYAC-
TOTHHUX Ta HU3bKOYACTOTHUX KOoNMBaHb. [loka3zaHo, 110 Taka B3a€EMOIisl IPU3BOAUTH JI0 MOSIBU JOAATKOBHX OicTabi-
JBHUX CTaHIiB, IO MAlOTh MEHIIY BEJMYMHY MOPOTOBOTO 3HAYECHHS aMIUTITYJH 30BHIIIHLOI CHJIM B MOPIBHSHHI 3
TapMOHIYHO 30y/KyBaHUM OCHMISATOpOM. lle sBHIIE MpOUTIOCTPOBaHO Ha MPUKIAIlI ABOX BHMNAAKIB: 30YHXKEHHS
OCLIJISITOpA OJJHOYACHUM 30BHIIIHIM BIUIMBOM BHCOKOYACTOTHHX Ta HU3bKOYACTOTHUX KOJIMBAaHb, Ta TAPMOHIYHO
30yKYBaHOTO OCHMJISITOPa 3 MOJYJIbOBAHOIO BJIACHOIO 4acTOTOI0. [loka3aHo, IO JA0AAaTKOBI 0icTaOUIBHI CTaHU
BUHMKAIOTh B PE3YJIbTAaTi TPHOXYACTOTHOT B3a€EMO/Iii. AHAJITUYHO PO3PaxoBaHi BIAMOBIIHI MOPOTOBI 3HAUYEHHS aMII-
JITYIIU 30BHIIIHBOI CHIIH, 110 BILIMBAE Ha OCHMIATOD. [IpUBeAeHO MOPIBHSIBHUI aHaNi3 pi3HOMaHITHUX THIIB Oic-
TaOlIbHUX CTaHiB B OCIUMJIATOPI.
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