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On the basis of analytical solution of the time-dependent Schrödinger equation the excitation of residual current 

density (RCD) in a gas ionized by two-color laser pulse is studied. We find general analytical expression for the 
RCD for arbitrary values of the Keldysh parameter, which coincides with the semiclassical calculations in the case 
of tunneling regime of ionization. 
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INTRODUCTION  
This work is focused on analytical investigation of 

the excitation of quasi-dc residual current density 
(RCD) due to gas ionization by ultrashort laser pulses. 
At present, this phenomenon is of great interest due to 
the possibility of using it to convert efficiently laser 
pulses into low-frequency radiation, in particular, into 
the radiation of terahertz frequency band [1 - 10]. 
Various ionization-driven mechanisms for generating 
residual currents in the plasma are being considered at 
present. When multicycle laser pulses are used, the RCD 
can be generated due to gas ionization by two-color laser 
pulses [3, 4, 6 - 10] or due to the asymmetry of the 
ionized medium [11]. In the case of using few-cycle laser 
pulses, free electrons can be accelerated by the electric 
field of the ionizing laser pulse itself [1, 2, 4, 12 - 15]. 

Previous analytical studies of this phenomenon were 
based on the so-called semiclassical approach, which 
includes the hydrodynamic equation for the plasma 
current density, and the adopted model expression for 
the tunneling ionization probability per time unit [4, 10, 
15]. However, the range of applicability of the 
semiclassical approach is limited by the parameters of 
laser pulses corresponding to the tunneling regime of 
ionization, when the Keldysh parameter [16] (defined 
by the ratio of atomic ionization energy and the average 
kinetic energy of an electron in a laser field) is much 
less than unity [12]. 

In this work we calculate RCD analytically by 
solution of the time-dependent Schrödinger equation 
using the strong-field approximation used in the pioneer 
work of Keldysh [16]. We assume that the quasi-dc 
RCD is generated due to gas ionization by two-color 
laser pulse, which contains a strong field at the 
fundamental frequency and a low-intensity field at the 
doubled frequency. We find the general analytical 
expression for the time derivative of the low-frequency 
current density and simplify it in the case of the low 
Keldysh parameter. In this case we obtain closed-form 
formula for the RCD and show that it coincides with the 
corresponding formula obtained on the basis of 
semiclassical approach.  

1. STATEMENT OF THE PROBLEM 
We assume that the electric field )(tE  of the laser 

pulse is polarized linearly along the z  axis. In order to 

ensure equality to zero of the integral of )(tE , the 
electric field is given via the vector potential )(tA :  
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Here, ẑ  is the unit vector along the z  axis, 0E  is the 
peak amplitude of the main field, 1<<α  is the ratio of 
the amplitudes of the additional and main fields, 0ω  is 
the fundamental (carrier) frequency, ϕ  is the phase 
shift between the carriers of additional and main fields, 

)(tf  is the pulse envelope, and c  is the speed of light 
in vacuum. For the sake of certainty, we will assume 
that the envelope has the Gaussian form  

 ( )22/2ln2exp=)( pttf τ− . (2) 

Here, pτ  is the intensity full-width at half maximum 
(FWHM). We neglect the interaction of atoms with each 
other assuming that the gas density is sufficiently low. 
In addition, we do not take into account the polarization 
response of plasma assuming that the maximum density 
of plasma is much less than the critical density and 
plasma frequency is 1−<< pp τω . 

The quantum-mechanical approach for calculation of 
the RCD is based on the solution of time-dependent 
Schrödinger equation for the electron wave function ψ :  
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Here,   is the Planck constant, )(rU  is the potential of 
the parent ion. For the sake of simplicity, we assume 
that the gas consists of hydrogen atoms and )(rU  is the 

Coulomb potential, reU /=)( 2−r . The RCD of free 
electrons is written as  

 RCD ˆj = | p |g
f f t

eN
m

ψ ψ
→∞

〈 〉 , (4) 

where gN  is the undisturbed gas density, p̂ = i− ∇  is 

the momentum operator, and fψ  is the projection of 
the wave function on the continuum states. 
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2. ANALYTICAL RESULTS 
Since the duration of the laser pulse is sufficiently 

large, the density of free electrons increases during 
many periods of the electric field. It allows one to 
approximate the RCD by the following integral  

 ∫
∞

∞− ∂
∂ dt
t
jj =RCD  (5) 

where  

 pdtW
m
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t

g 3),(= ppj
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∂  (6) 

is the average (low-frequency) growth rate of RCD, 
which is equal to the time derivative of the low-
frequency current density j . Here, ),( tW p  is the 
averaged over the field period momentum distribution 
of the ionization probability per unit time. 
In order to calculate ),( tW p  we assume that the 
envelope of the pulse is constant, i. e., the vector 
potential is  
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0
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where the field amplitude )(= 0 tfEE f  is the function 
of the "slow" time. We use the strong-field 
approximation used in the Keldysh work [16]. In this 
approximation the interaction of free electrons with the 
parent ion is neglected. At the same time, it is assumed 
that the laser pulse intensity is small enough to neglect 
the depletion of the atomic ground state. In this case the 
momentum distribution of the ionization probability per 
unit time is expressed as the sum of the probabilities of 
n-photon processes:  
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Here, 〉+〈 1)/(~=* 0ωpIn  is the minimum possible 
number of absorbed photons (the expression 〉〈x  
denotes the integer part of the number x ), 

ppp UII +=~ , pI  is the atom ionization energy, 

/4)(1= 2
0 α+pp UU  is ponderomotive energy in the 

two-color field, 2
0

22
0 /4= ωmEeU fp  is ponderomotive 

energy in the field of fundamental field, 

pImpE ~/2= 2 +∆  is the energy for detachment and 
acceleration of the electron. 

The function )(pL  in the formula (7) describes the 
envelope of the momentum distribution of the ionization 
probability. Taking into account that the photon energy 
is much smaller than the ionization energy, i. e., 

1/= 00 >>ωpIn , the function )(pL  is written as  

 
)(

)/

/21
2=)(

,(1/2

2

3/23
0

s

stiS

stp

p

tE
e

mIp

I
e

iL




p
p ∑














+ ⊥

πω . (9) 

Here, 
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is the part of the action of a free electron that is 
independent of the coordinates, ⊥p  is the module of the 
transverse momentum, st  is the stationary points of 

),( tS p , and s  is the index numbering these points. The 
values of st  satisfy the equation  

 0=),(

st
t

tS
∂

∂ p , (11) 

and have a positive imaginary part and a real part lying 
in the interval 0[0, 2 /π ω . 

The action of the second harmonic field is taken into 
account in the phases in Eq. (9) by considering terms 
linear with α . Under the condition 1, −<< γγα  the 
stationary points of action are found in the absence of 
additional field:  
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Here, where zq  is the projection of dimensionless 

momentum pmI2/= pq  on the z axis, ⊥q  is the 

module of the transverse dimensionless momentum, 

0/2= pp UIγ  is the adiabacity parameter of Keldysh. 

Following the work [16] we assume that the main 
contribution in ),( tW p  is given by the small values of 
final electron momentum, 12 <<q . It makes possible to 
neglect the momentum dependence of the pulse in the 
pre-exponential factors and use a Taylor series 
expansion of q  up to the quadratic terms in the 
exponential factor:  
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Here,  
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The term ),( γε q  in Eq. (13) is associated with the 
intercycle interference of two electron trajectories 
originating from electron ionization from neighboring 
half-cycles. It is a rapidly oscillating function of the 
momentum for arbitrary values of γ . Therefore, when 
calculating the integral characteristics such as average 
ionization probability and current density the term ε  
can be neglected. The rest of the function )(pW  is a 
product of the smooth envelope and the sum of delta 
functions corresponding the spheres defined by the 
energy conservation law. The maximum of the smooth 
envelope is located at the some optimal momentum:  
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It can be seen that for 0=α  the optimal momentum 
is 0=optp  and the function )(pW  is symmetric in the 
longitudinal momentum. Therefore, in the absence of the 
second harmonic the average photoelectron momentum is 
zero. The addition of a small field at the doubled 
frequency breaks the symmetry of the momentum 
distribution of the ionization probability. It leads to the 
excitation of nonzero residual current density. 

Substituting the expression (13) in Eq. (6) we obtain 
an expression for the derivative of the low-frequency 
current density  
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Here, 1/22
0 ))1/2(1/(= γ+−nnqn  is the dimensionless 

momentum of the electron that absorbed n  photons and  
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The expression obtained is rather complicated. 
However, it can be significantly simplified in the limits 
of high and small Keldysh parameter γ . In this work 
we simplify the obtained expression for 1<<γ , which 
corresponds to the tunneling regime of ionization. In 
this case, the derivative of the low-frequency current 
density is represented as a product of the average 
ionization probability per unit time pp 3),(= dtWw ∫ , 
and the most most probable electron velocity 

moptopt /= pv :  

 weN
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∂
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where  
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Average ionization probability per unit time is 
calculated by the method similar to that is used to 
calculate the t∂∂ /j ,  
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where 1=0Q . Note, that the strong-field approximation 
neglects the interaction of the free electron with its 
parent ion. The account of this interaction leads to the 
addition of the correction factor 

)/)(2/16(= 1/4
0 fa EEQ π [16, 17]. 

In the case of af EE /<<α  the expression (18) 
exactly coincides with the analogous formula obtained 
by semiclassical approach [18]. Using Eqs. (18) and 
(20) it is easy to find an analytical expression for the 
RCD. To do this, we use the method used previously in  
[10, 15, 18]. In this method, the time dependence of the 
average ionization probability is approximated by a 
Gaussian function with a characteristic scale 

1/2
000 )]()/('(0)2[= −EwEwEfi

τ . As a result, the RCD 
is  

 ϕασ sin
2
3

oRCD scj≈j , (21) 

where iEw τπσ )(/2)(= 0  is the final degree of 

ionization and 00
2

o /= ωmENej gsc  is the maximum 
oscillatory current density in the field of fundamental 
harmonic. 

CONCLUSIONS 
The excitation of residual current density due to gas 

ionization by ultrashort laser pulses was studied on the 
basis of the strong-field approximation for the solution 
of the time-dependent Schrödinger equation. It is 
assumed that the laser pulse contains the main field at 
the fundamental frequency and the additional field at the 
doubled frequency. We have found the general 
analytical expression for the time derivative of the low-
frequency current density, which is significantly 
simplified in the case of Keldysh parameter 1<<γ  
corresponding to tunneling regime of ionization. In this 
case the photocurrent is determined by the product of 
the average ionization probability per unit time and the 
most probable velocity of the electron (corresponding to 
the maximum of the velocity distribution function), in 
good agreement with the results given by the 
semiclassical approach. When the condition 1<<γ  is 
not satisfied, such factorization is impossible and the 
dependence of the residual current density on the laser 
pulse parameters may differ significantly from the 
results obtained by the semiclassical approach. 
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ПРИБЛИЖЕНИЕ СИЛЬНОГО ПОЛЯ ДЛЯ АНАЛИТИЧЕСКОГО РАСЧЁТА ОСТАТОЧНОЙ 
ПЛОТНОСТИ ТОКА, ВОЗБУЖДАЕМОГО ПРИ ИОНИЗАЦИИ ГАЗА ИНТЕНСИВНЫМ 

БИХРОМАТИЧЕСКИМ ЛАЗЕРНЫМ ИМПУЛЬСОМ 
А.А. Романов, А.А. Силаев, Н.В. Введенский 

На основе аналитического решения нестационарного уравнения Шрёдингера исследуется возбуждение 
остаточной плотности тока в газе, ионизируемом интенсивным бихроматическим лазерным импульсом. 
Найдено общее аналитическое выражение остаточной плотности тока для произвольных значений парамет-
ра Келдыша, которое совпадает с результатами полуклассических расчетов при туннельном режиме иониза-
ции.  

НАБЛИЖЕННЯ СИЛЬНОГО ПОЛЯ ДЛЯ АНАЛІТИЧНОГО РОЗРАХУНКУ ЗАЛИШКОВОЇ 
ГУСТИНИ СТРУМУ, ЗБУДЖУВАНОГО ПРИ ІОНІЗАЦІЇ ГАЗУ ІНТЕНСИВНИМ 

БІХРОМАТИЧНИМ ЛАЗЕРНИМ ІМПУЛЬСОМ 
А.А. Романов, А.А. Силаєв, Н.В. Введенський 

На основі аналітичного розв’язку нестаціонарного рівняння Шредингера досліджується збудження зали-
шкової густини струму в газі, що іонізований інтенсивним біхроматичним лазерним імпульсом. Знайдено 
загальний аналітичний вираз залишкової густини струму для довільних значень параметру Келдиша, який 
співпадає з результатами напівкласичних розрахунків при тунельному режимі іонізації. 
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