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This work is devoted to the development of the imaginary potential method for efficient absorption of the wave
function on the periphery of the computational domain in numerical solution of the time-dependent Schrddinger
equation. The optimal relationships between the width and amplitude of single-hump imaginary potentials and the
de Broglie wavelength corresponding to the maximum of absorption efficiency are determined.
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INTRODUCTION

The numerical solution of the time-dependent
Schrédinger equation (TDSE) is one of the main tools
for investigation of different phenomena, in particular,
ionization-induced phenomena caused by ultrashort
laser pulses [1-8]. In the latter case, the TDSE in the
length gauge and dimensionless variables is written as
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where t is the time, V (r,t) is the time-dependent parti-

cle potential energy, and r is the particle radius vector.
In the mathematical formulation of the problem it is
assumed that the boundaries of the computational do-
main are located at infinity. However, due to the finite
size of the computational grid, the electronic wave func-
tion can reach the grid boundary and, depending on the
method of numerical solution of the TDSE, reflect on it
or move on to the opposite edge of the grid. Usually, in
order to avoid reflection and transmission of the wave
function, the absorbing layers are introduced near the
grid boundaries [9]. The different methods of absorption
are considered [6, 9 - 15], among which the simplest and
most popular method uses negative imaginary potentials.
The essence of this method consists in the introduction
of negative imaginary potential (NIP) U y,p(r) on the

periphery of the computational domain [9],
V(r,t)—)V(r,t)-f-U N|p(r). (2)
It is important that high efficiency of absorption is
achieved in a limited range of de Broglie wavelengths.
The width of this range increases with the width of the
absorbing layer. However, the greater is the width of the
layer, the more CPU time is required for numerical cal-
culation. Therefore, the actual problem is the construc-
tion of compact imaginary potentials with a wide range
of effective absorption.
One of the variants to construct the potential having
a large range of absorption is the use of a set of smooth
single-hump imaginary potentials located next to each
other. Each single-hump potential will absorb in a cer-
tain range of wavelengths. The key moment is to deter-
mine the optimal parameters of single-hump potential,
corresponding to the maximum absorption efficiency. In
this work we investigate the reflection and transmission
properties of two different single-hump imaginary po-
tentials. We determine the dependences of the reflection

290

and transmission coefficients on the de Broglie wave-
length, as well as on the parameters of single-hump po-
tentials. The dependences of optimal parameters of the
absorbing potentials on the incident wavelength are
found.

1. STATEMENT OF THE PROBLEM

Let us assume for simplicity that the boundary of the
computational domain is flat and the imaginary poten-
tial depends only on the coordinate x, which is directed
across the layer. Then the scattering of a plane wave on
the imaginary potential is described by the one-
dimensional stationary Schrédinger equation
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where k is the x component of the wavenumber. The
absorbing single-hump NIP is defined as
U nip (X) = —iuf (x/1), (4)
where u>0 and | are the amplitude and characteristic
width of the potential, f(&) is a real even bell-shaped
function that defines the shape of the hump. We consid-

er here two kinds of NIPs: cosine-squared potential,
corresponding to

2
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and Poschl-Teller potential, corresponding to

f(£) = cosh2(aé), & = 2acosh(\/§ ) (6)
The coefficient « in the last formula is introduced
in such a way that width of the function f (&) at the

level of 1/2 is equal to 1, as for the function (5).

The efficiency of absorption of a plane wave is char-
acterized by the so-called survival probability S, which
is equal to the sum of the reflection R and transmission
T coefficients [14]. Its value is less than or equal to
unity due to the decrease of probability density inside
the absorbing layer. The lower is S, the higher is the
efficiency of the absorption. In order to find the trans-
mission and reflection coefficients we solve Eq. (3) with
the boundary conditions
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which correspond to a plane wave incident from the left.
Reflection and transmission coefficients are R:|r|2

and T :|t|2 , respectively.

The problem of scattering of a plane wave on the
single-hump imaginary potential (4) has two independ-
ent parameters, namely, the normalized wavelength
v=Al, where A =2x/k, and the normalized ampli-

tude, £=12%u. In order to optimize the parameters of
imaginary potential it is necessary to find the values of
v and &, which correspond to minimum of survival
probability S .

2. RESULTS

The coefficients of reflection and transmission are
calculated numerically for cosine-squared and Pdschl-
Teller potentials using the reduction of Eqg. (3) to the
system of two equations of the first order. This system
of equations is solved by the Runge-Kutta fourth order
method for | =1.

Fig. 1 shows the dependences of the reflection R
and transmission T coefficients, as well as the survival
probability S on the normalized wavelength v for
three fixed values of the normalized amplitude, =2,
20, and 80. It can be seen that for both considered po-
tentials there exists an optimal normalized wavelength
Vopt corresponding to the minimum of survival proba-

bility. When v <<vgp Or v >>vqy the survival prob-

ability tends to unity. It is explained by the fact that for
large v waves are mainly reflected, while for small v
they pass through the absorbing layer. The minimum
value of the survival probability Sy, =S(vop) de-

creases dramatically with increasing ¢. In order to
achieve effective absorption one should use sufficiently
large values ¢ > 20 . Also note that for the same values
of ¢, the minimum survival probability S, for the
Poschl-Teller potential is significantly lower as com-
pared with the cosine-squared potential. Thus, for
£ =80, the values of S, for considered potentials
differ by more than two orders of magnitude.

Fig. 2 shows the dependence of R, T, and S on
the normalized amplitude & for fixed values of normal-
ized wavelength v =1, 2, and 8. For both considered
imaginary potentials functions S(g) first decrease to

some minimum values Sy = S(egpt) With increasing

¢ . Further behavior of functions S(g) is significantly

different for the two considered imaginary potentials.
For the cosine-squared potential S asymptotically ap-
proaches unity, while for Pdéschl-Teller potential it be-
comes a constant, which is approximately equal to
Smin - The latter means that an increase in the ampli-

tude of the potential do not reduce the efficiency of ab-
sorption. Note, however, that an unlimited increase in
the amplitude of the Pdschl-Teller potential in the nu-
merical solution TDSE is impossible because of the
infinitely long tail of potential, which may distort the
wave function in the computational domain.
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Fig. 1. Dependences of reflection (R) and transmission
(T) coefficients, as well as survival probability S=R+T
(short-dashed, long-dashed, and solid curves,
respectively) on the normalized wavelength v = A/l for
various fixed values of the normalized amplitude
&=2, 20, and 80. Calculations are performed for (a)
the cosine-squared potential (Egs. (4), (5)) and (b)
Pdschl-Teller potential (Egs. (4), (6))
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Fig. 2. Dependences of reflection (R) and transmission
(T) coefficients, as well as survival probability S=R+T
(short-dashed, long-dashed, and solid curves, respec-
tively) on the normalized amplitude & = 1°u for various
fixed values of the normalized wavelength
v =1, 2 and 8. Calculations are performed for (a)
the cosine-squared potential (Egs. (4), (5)) and (b)
Pdschl-Teller potential (Egs. (4), (6))
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Next, we calculated the dependence of the optimal
normalized amplitude &g, on the normalized wave-

length v for the considered potentials. Quadratic inter-
polation of the obtained dependences using the least
square method in the range of 0.5<v <2 gives the
following results. For the cosine-squared potential

sopt ~1+067x%, Kk =2xlv 8)
and for the Pdschl-Teller potential,
gopt ~ 2+1.17x%. 9)
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Fig. 3. Dependences of the survival probability
corresponding to optimal normalized amplitude &

on the normalized wavelength v for the cosine-squared
potential (solid curve) and Pdschl-Teller potential
(dashed curve)

The results of numerical calculations of the wave-
length-dependence of survival probability correspond-
ing to the optimum amplitude are shown in Fig. 3. It can
be seen that the survival probability decreases sharply
with decreasing of the de Broglie wavelength. In order
to find the amplitude u of the negative imaginary po-
tential corresponding to high-efficient absorption of the
de Broglie wavelength A one should use the relation

Uopt = Eopt (AN, (10)
with the use of Eq. (8) or Eq. (9).
CONCLUSIONS

To conclude, in this work we have calculated the co-
efficients of transmission and reflection of the plane
wave on the two different single-hump negative imagi-
nary potentials (NIPs) for wide range of the potential
parameters and de Broglie wavelengths. It is shown that
the Pdschl-Teller potential (Egs. (4), (6)) provides more
efficient absorption of the entire range of de Broglie
wavelengths than the cosine-squared potential (Egs. (4),
(5)). At the same time the advantage of using the co-
sine-squared potential in numerical calculations is the
finite interval of its location, as opposed to Pdschl-
Teller potential.

The relationships between the width and the ampli-
tude of the considered potentials and the de Broglie
wavelength corresponding to the maximum of absorp-
tion efficiency are determined. The obtained optimal
parameters of NIPs can be used to construct the absorb-
ing potential containing several humps of different
width and amplitude for high-efficient absorption in
wide range of de Broglie wavelengths.
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ONITUMU3ANUSA TAPAMETPOB KOJIOKOJIOOBPA3HBIX MHUMBbIX IOTEHITUAJIOB
JJIA QOOEKTUBHOI'O ITOTJIOIEHUA BOJTHOBOU @ YHKIIUU ITPU YNCJIEHHOM PEIIEHUN
HECTAIIMOHAPHOI'O YPABHEHUS IIPEIUHTEPA

A.A. Cunaes, H.B. Beeoenckuii

Pabora nocBsiiieHa pa3BUTHIO METO/Ia MHUMOT'O MTOTEHI[MAJIA JJIs IOTJIONICHHS BOJHOBOM (DYHKIIUHU Ha TIepude-
pun pacu€THOW 00IacCTH MPH YUCICHHOM PEIICHUH HecTalroHapHoro ypaBHenus Llpénuurepa. HaiineHsr omntu-
MaJIbHbIE COOTHOLICHUSI MEXK/y IIMPUHON M aMILTUTYJ0H MHAMOT'O MOTEHIIMANA U JUIMHOM BOMHBI je Bpoiins, coot-
BETCTBYIOIINE MAKCUMATbHON 3()()DEKTUBHOCTH TOTJIOIICHHSI.

OIITUMIBALIA HAPAMETPIB I3BOHOBUIHUX YABHUX INOTEHHIAJIB AJIA EGEKTUBHOI'O
HOTIJIMHAHHS XBAJIHOBOI ®YHKIII ITPH YACEJBHOMY PO3B’SI3AHHI
HECTAINIOHAPHOI'O PIBHAHHSA IIPBOAIHT'EPA

0.A. Cunaces, M.B. Bgeoencvkuii

PoOora npucBsyeHa po3BUTKY METO/Y YSBHOTO MOTEHIIAy JUIS TIOTJIMHAHHS XBHJIBOBOI (QyHKIIT Ha nepudepii
Ppo3paxyHKoBOi 00JIaCcTi IIpH YHCENILHOMY pO3B’si3aHHI HecTauioHapHoro piBHsHHs Llpeoninrepa. 3HaiineHo onrtu-
MaJlbHi CHIBBIIHOIIEHHS MK LIMPHUHOIO 1 aMILTITYJOI0 YSBHOTO IOTEHIiady Ta JOBXHUHOI XBWii e bpois, siki
BIJITIOBIZIAI0Th MAKCHUMaJIbHIi €()EKTHBHOCTI TOTJIMHAHHS.
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