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Dynamics of charged particles in external electromagnetic fields in the absence of resonances proportional to the 

first degree of intensity of an electromagnetic field is investigated. Two schemes are investigated. In the first exist-
ence of several regular electromagnetic waves is supposed. It is supposed that frequencies and wave vector of these 
waves are such that the phase velocity one of beating waves is close to thermal velocity of particles. It is essential 
that thus organized Cherenkov resonances are proportional to square of small parameter (a square of dimensionless 
intensity of the field). In the second scheme is supposed that the phase of the field of wave changes by jump under 
the random law. Parameters of the studied systems at which one or other scheme of transmission of energy the field 
to particles has advantage are found. 
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INTRODUCTION 
Previously, it was shown that in all cases for the 

same energy stored in the wave scheme with regular 
fields significantly more effective than scheme heating 
particles by the noise fields [1]. However, if resonances 
of particles with electromagnetic fields are absent, the 
only mechanisms of heating are mechanisms using the 
noise fields. In particular waves with random jumping 
phase [2, 3]. In all previous studies suggested that the 
resonances are usual resonances of the first-order of the 
field [4, 5]. It is possible to organize such resonances 
only in the presence medium (Cherenkov resonances), 
or in the presence of an external constant magnetic field 
(cyclotron resonances, resonances on normal and anom-
alous effect of Doppler). In absence of medium and the 
external magnetic field such resonances can't be orga-
nized. However, even in vacuum it is possible to organ-
ize Cherenkov resonances fields’ proportional to the 
second order of the field strength.  

Such resonances, in particular, are used in the FEL 
schemes and in schemes of the accelerating type of in-
verse free-electron laser. It must be said that the effec-
tiveness of the interaction of charged particles with 
fields with such resonances are significantly lower than 
in the interaction of first-order of the field. However, as 
we will see below, they can also play an essential role in 
processes of transmission of energy from electromag-
netic waves to particles. Below we will investigate 
mechanism of the charged particles heating in a vacuum 
in the absence of resonances of the first-order in the 
field. The essence of this mechanism is that the velocity 
the charged particles in the field of several waves can be 
in the Cherenkov resonance with the field of beating 
wave (combination wave).  

The essence of this mechanism is that the speed of 
the charged particles in the field multiple waves can be 
in the Cerenkov resonance with the wave field heartbeat 
(combination wave) and, when the width of this reso-
nance is large enough so the separatrix of this resonance 

touches separatrix of nonlinear resonance on other com-
bination wave, the motion of the particles becomes lo-
cally unstable. The dynamics of particles is similar to 
the dynamics of particles in a random field, and there is 
their stochastic heating 

1. STATEMENT OF PROBLEM  
AND THE BASIC EQUATIONS  

Let's consider dynamics of the charged particles in a 
field of several electromagnetic waves. Expressions for 
electric and magnetic fields of these waves can be pre-
sented in such kind: 
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The equations of movement in fields (1) look like: 
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These equations are convenient rewrite in dimen-
sionless variables: 
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Substituting fields (1) in the equations (2) and using 
dimensionless variables it is possible to receive the fol-
lowing, the equations: 
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For the further analysis it is convenient to enter also 
a certain auxiliary characteristic of a particle which we 
further shall name partial energy of a particle which 
satisfies to the following equation: 

( )n n nrEγ ω=






 .  (5) 
From definition of this partial to energy follows, that 

it determines those value of energy which the particle 
would have if it moved only in the field of one n -th 
electromagnetic wave. Using definition of this partial 
energy, from the equations (4), (5) it is possible to re-
ceive the following integral of movement: 
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Generally the equations (4), (5) together with inte-
gral (6) can be investigated only by numerical methods. 
For obtain of analytical results we shall consider, that 
the parameter of force of each of waves working on a 
particle is small. In this case all description particles (its 
energy, a pulse, coordinate, speed) can be presented as 
the sum slowly and quickly varying sizes: 

P P P= +
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   n n nγ γ γ= +  . 
In this case it is possible to receive the following ex-

pressions and the equations which connect fast and slow 
variables: 
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The equations for fast variables can be integrated: 
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The equations for slow variables will get the kind: 
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The equations (8) are equivalent to the equation of a 
nonlinear pendulum (a mathematical pendulum) on 
which external periodic force operates. We shall show 
it. Let among those waves which operate on a particle, 
are available two waves (at number 1 and 2) which pal-
pation form a combinational wave which phase speed, is 
close to average speed of a particle. We shall designate 
a difference of phases of these waves through θ : 

1 2θ ψ ψ≡ − . For this difference of phases it is possible 
to receive the following differential equation. 
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dt
θ χ γ= −Ω = ∆
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where 1 2k kχ ≡ −
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 , 1 2ω ωΩ ≡ − . 
Thus we count that / vχΩ ≅ . Equation (8) we now 

can rewrite as: 
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, ( )F τ  – periodic function. 
Let's consider that initial energy of a particle in ac-

curacy corresponds of Cerenkov resonance of a particle 
with a combinational wave. It means, what: 0( ) 0γ∆ = . 
Besides we shall take into account that as a result of 
interaction of waves with particles energy of a particle 
has changed not on many. In this case detune it is possi-
ble to spread out in Taylor's number: 
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Then the equations (9) and (10) will be completely 
closed and will accept the following kind: 
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The system of the equations (11) is equivalent to the 
equation of a mathematical pendulum taking place un-
der influence of external periodic force ( )F τ  

( ) ( )
0 0/ ( / ) cos F
γ

θ γ γ θ τ= ∂∆ ∂ Ω +  . (12) 

The equation (12) correctly describes dynamics of 
particles at small amplitudes of waves working on them. 
And the described dynamics is less than amplitude of 
these waves, the more precisely. 

2. NUMERICAL RESEARCHES  
OF DYNAMICS OF PARTICLES 

We are interested in the dynamics, both at small and 
at high field strengths. Therefore, we performed a series 
of numerical studies of the initial system of equations 
(4). We investigated the dynamics of the particle num-
ber in the most interesting field configuration, which is 
the field 3n ≥  of propagating electromagnetic waves. 
The dispersion diagram in Fig. 1 illustrates the appear-
ance of combination waves.  

 
Fig. 1. The dispersion diagram of interacting waves 

The conditions for the appearance of stochastic in-
stability are conditions of overlapping nonlinear reso-
nances of combination waves  
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We chose two values for the field strengths of each 
of the waves 0.03i = , 0.3i =  and different values of 
the wave numbers. The initial velocities of the particles 
were chosen to be zero. 

Fig. 2 shows the change of energy versus time for a 
single particle with the initial phase 0 0ψ =  three waves 
with strengths 0.03i = , 0.3i =  and wave numbers 

1 2 30.8,   1,  1.2k k k= − = − = .  

  
Fig. 2. The energy of  

single particle 0.03i =  
Fig. 3. The energy of 

single particle 0.3i =  

From Fig. 2 and Fig. 3 it is visible that at small 
strength of electromagnetic field of waves the particles 
oscillate regular, being in single nonlinear resonance of 
the combination wave. With increasing field strength 
under the action of fields there is transition of the parti-
cle from resonance in the resonance, dynamics of the 
particles motion has irregular character with significant 
changes of particles energy. 

To determine the laws of interaction of charged par-
ticles with electromagnetic fields we will investigate the 
energy averaged over ensemble of 30 particles. Depend-
ences on time of average energy with various initial 
values of phases 0π ϕ π− < ∆ <  for three waves with 
strength 0.3i =  and various values of wave numbers 
are given in plots of Figs. 4,5. 

  
Fig. 4. Energy averaged 
over ensemble of particles 

1 2 30.8, 1,  1.2k k k= − = − =  

Fig. 5. Energy averaged 
over ensemble of particles 

1 2 30.9, 1,  1.1k k k= − = − =  

Dependences on time of average energy with various 
initial values of phases 0π ϕ π− < ∆ <  for five waves 
with strength 0.3i =  and various values of wave num-
bers are given in plots of Figs. 6,7. 

  
Fig.6. Energy averaged 

over ensemble of particles 
1 2 30.8, 1,  1.2k k k= − = − =

4 50.6, 0.4k k= − = −  

Fig.7. Energy averaged 
over ensemble of particles 

1 2 30.9, 1,  1.1,k k k= − = − =

4 50.7, 0.7k k= − = −  
As can be seen from these Figures the growth rate of 

the average energy of the ensemble of particles and its 
maximum energy depends on the magnitude of the 
strength of electromagnetic waves, and the number of 
combination waves involved in the interaction, as well 

as the distance between their nonlinear resonances. So 
the maximum energy that can collect particles in the 
case of overlapping of Cherenkov resonances from the 
combination of waves, is the sum of the distances be-
tween resonances 
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The degree of nonlinear resonances overlapping, de-
pending on the amplitudes of the interacting waves, 
determines the time of particle transition from reso-
nance to resonance, thereby determining the velocity 
and dynamics of the particles on time. The dynamics of 
growth of the average energy of the particles also de-
pends on the time spent by the particles inside the non-
linear resonance.  

3. MODEL OF WAVE WITH RANDOMLY 
JUMPING OF PHASE 

For a base for formation of the wave with chaotically 
jumping phase, the travelling harmonic wave of kind 

0( , ) cos( )f t r a t krω ϕ= − +


   is taken (regular wave), to 
phase of which we will add stochastic function of 
time ( )tξ . For a numerical analysis the scheme of the 
numerical analysis which allows to vary the quantity of 
an interval of phases in which there is the jump of phase 
change, is realized. Also it is realized the possibility to 
select the interval of time in which, during the random 
moment of time, the phase jump occurs. Time of jump is 
supposed considerably smaller than the wave period. 

On plots Fig. 8, as example, one can see the initial 
part of realization (length of 1000 period) of the wave 
field strength time dependence at random jump of the 
phase at each period of wave for interval of phases jump 
( 0π ϕ π− < ∆ < ) and spectral density of power of this 
realization.  

 
а 

 
b 

Fig. 8. Field of wave and spectrum 

From these plots it is visible that phase jump occurs 
at random moment of time at each period of the regular 
wave Fig. 8,а, and quantity of this jump also is random 
and lies in the range of phases (-π, π). The spectrum (see 
Fig. 8,b) is widened enough with a maximum near to 
unity.  

а 
 

b 
Fig. 9. Spectrum of wave: one at one period with jump 

( 0/ 2 / 2π ϕ π− < ∆ < ) (a); one at 5-th period with 
jump ( 0π ϕ π− < ∆ < ) (b) 
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With increasing of the interval of time on which 
there is jump of the phase and reduction of an interval 
of the phase jumps, the spectrum of the wave is consid-
erably narrowed see plots Fig. 9. Spectral bandwidth 
reduction is proportional both to reduction of quantity of 
jump, and increasing interval of time in which this jump 
takes place. 

4. DYNAMICS OF PARTICLES  
IN THE FIELD OF WAVE WITH RANDOM 

CHANGING PHASE 
The dynamics of the particle obeys to the vector 

equation (14), in which ( )tξ is a stochastic function 
changing under the law described above. Numerical 
modeling of the particle motion in the field of wave 
with chaotically changing phase is carried out in the 
absence of a magnetic field 0 0H =  at various intervals 
of change of the phase jump ( 0π ϕ π− < ∆ < ) and various 
intervals of time in which, at random moment, there is 
the phase jump. 

On Fig. 10 time dependence of the energy change 
for single particle with initial phase 0 0ψ =  and aver-
aged on ensemble from 30 particles with initial phases 
from interval ( 0π ϕ π− < ∆ < ) for case of single jump at 
period and interval of the phase jumps ( 0π ϕ π− < ∆ < ), 
is presented. On the same plot, for comparison with the 
diffuse law of the energies growth with time, the curve 
of the time dependence of the energy change is given: 

( )dγ τ α τ=  at value of coefficient α =  0.5. The pa-
rameter of the wave force is 1ε = . 

 
а 

 
b 

Fig. 10. Energy particle gain at the field: 
one particle (a); ensemble averaging (b) 

From these graphs it is visible that the single particle 
at interaction with the wave field in a random way gain-
ing and loses energy. However when averaged over 
ensemble of particles (a particle with different initial 
phases) a certain regularity of the particles energy 
growth is observed. 

The graphs of dependence of the particles energy on 
time averaged over ensemble of 30 particles for interval 
of jump of phases 0π ϕ π− < ∆ <  and values of the force 
wave parameter 0.3ε =  and 1ε =  are given in Fig. 11 

 
a 

 
b 

Fig. 11. Energy particle gain at the field with random 
jumping phase with  one jump at period: 

0.3ε =  (a); 1ε =  (b) 

From Fig. 11 it is visible that dependence of average 
energy on time has close to diffusion character – smooth 
curves ( )dγ τ α τ=  with α = 0.5. 

For a more detailed analysis of the influence of dif-
ferent parts of the spectrum in the dynamics of energy 
exchange of charged particles with the wave field with 
randomly changing phase of this wave identified three 
main region of the spectrum: a low, basic and high fre-
quency. In this case, the missing parts of the frequency 
spectrum supplemented by zero values. With the help of 
the inverse Fourier transform has been restored realiza-
tions which correspond to each parts of the spectrum. 
Figs. 12-14 shows plots the spectral power parts of spec-
trum and the corresponding initial part of restored field 
for regions low 3

0 010 0.5ω ω ω− < < , main 0 00.5 1.5ω ω ω< <  
and the high frequency 01.5ω ω> .  

 
а 

 
b 

Fig. 12. a – low region of spectrum; b – initial part of 
restored field from low region of spectrum 

 
а 

 
b 

Fig. 13. a – main region of spectrum; b – initial part  
of restored field from main region of spectrum 

 
а 

 
b 

Fig. 14. High frequency region of spectrum (a); 
initial part of field restored main region of spectrum (b)  

For each of the reconstructed field realizations has 
been investigated the dynamics of particles in these 
fields for different values of the field amplitude. For 
small amplitudes of the field strength of the wave pa-
rameter’s 0.01,ε ≤  the main contribution to the energy 
exchange between the field and particles is in the low 
frequency range. Figs. 15, 16 shows graphs of the longi-
tudinal momentum (energy) of the particles from time to 
time, averaged over an ensemble of 30 particles using 
the restored realization from various parts of the spectral 
expansion. 

Graphics averaged momentum for the high frequen-
cy part of the spectrum is similar graphs for the middle 
part of the spectrum. As seen from these graphs for 
small field amplitude ( 0 0.1ε< < ) a major role in the 
energy exchange of particles with field has low frequen-
cy.  

γ
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а 

 
b 

Fig. 15. The average pulse 0.01ε = . a – low-frequency 
part of spectrum;b – main part of spectrum 

 
а 

 
b 

Fig. 16. The average pulse 0.1ε = :  low-frequency 
part of spectrum (a); main part of spectrum (b) 

With increase of the amplitude ( 0.1ε > ) major role 
in the energy exchange of particles with field has main 
part of frequency spectrum. 

It should be noted that the model of wave, consid-
ered above, with jumps of the phase leads to significant 
broadening of the spectrum and thus the most part of the 
spectrum can be a small effective for heating. However 
there are schemes with jumps of phases [6, 7] which 
don't lead to significant broadening of the spectrum in 
vicinity of basic frequency ω (by the statement of the 
authors). In this case efficiency of heating can be high. 

5. EXPERIMENTAL INVESTIGATIONS 
Higher we saw that it is necessary for formation of 

slow virtual waves (beating waves) that the particle in-
teracted at least with two running towards each other 
waves. In the resonator filled with rare plasma such 
conditions can be realized at decay of a high-frequency 
wave on a high-frequency wave and on the plasmas 
wave. Such process especially effectively proceeds in 
conditions when distance on frequencies between the 
main modes of the resonator are close to plasmas fre-
quency. 

In addition, the nature of the decay process (speed of 
its flow, regular or chaotic dynamics) generally depends 
on the intensity of the decaying waves. 

Besides, character of the decay process (speed of its 
flow, regular or chaotic dynamics) depends in general 
on intensity of the decaing wave. To understand these 
features we put a series of experiments. The resonator 
filled with rare plasma ( 2 2

pω ω<< ) was excited in these 
experiments from an external source (magnetron) at a 
frequency 2.7 GHz. The spectrum of the oscillations 
excited in the resonator depending on the level of the 
RF power entered into resonator was studied. It was 
found that at the level of the input power close to 52 kW 
or more in the resonator regular process of decay takes 
place. As a result of such decay there is a low-frequency 
wave at frequency close to pω  besides, there was a new 
high-frequency wave which frequency there was less 
than frequency of the magnetron on close to pω . Thus 
in these cases (cases rather small strength of RF wave) 

in the experiment classical regular process of decay was 
observed. Such processes of decay (cascade of decays) 
can form the required set of slow combination wave for 
effective self-consistent plasma heating. It should, how-
ever, bear in mind that with further increase in the am-
plitude of the RF wave which excites the cavity, decay 
process becomes less regular. Moreover at excess mag-
netron power over some critical value the decay process 
becomes irregular. Note that this occurs when the 
growth rate of decay instability becomes greater of the 
plasma frequency. The listed above features are illus-
trated by Figs. 17-20. In these figures the spectrum of 
the excited oscillations is presented at the inputting 
power of 52 kW (see Fig.18). Plasma frequency in these 
figures isn’t presented. When the power of the excited 
oscillations increased that the spectrum of the excited 
oscillations has essentially extended. When reaching of 
power level 167 kW the spectrum becomes almost con-
tinuous (see Fig. 19). Dependence of the spectrum width 
on the level of input power is presented on Fig. 20. 

  
Fig. 17.  Oscillations 
spectrum at P=17 kW 

Fig. 18. Oscillations  
spectrum at P=52 kW 
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Fig. 19. Oscillations 

spectrum at P=167 kW 
Fig. 20. Dependence  

of the spectrum  
width on the input power P 

CONCLUSIONS 
To compare the effectiveness of a set of energy par-

ticles in the combination of waves (in terms of overlap-
ping nonlinear resonances of the second order in the 
field), and in the wave field with a randomly jumping 
phase will proceed from the natural assumption of the 
equality of power in the regular  waves and wave with 
jumping phase reg chW W= .  

Here we have:  
2 2

0

~ /
N

reg i i reg
i

W N Qε ω ε
=

= ∆∑ ; 

~ 1/i iQω∆ ; 2
ch chW ε ω= ∆ ; ~ 1chω∆ . 

From these relations we find the following relation 
between the amplitudes of the regular wave and noise 
wave: 2 2~ /reg chQ Nε ε . 

We will also use the natural assumption that at de-
velopment of dynamic chaos, between the regular and 
the amplitudes of the noise field exist the relation: 



ISSN 1562-6016. ВАНТ. 2015. №4(98) 166 

2~ ~comb reg chε ε ε . In this case, one can enter the follow-

ing coefficient of efficiency ( ) /chK Q Nε= ⋅ . 
If this ratio is greater than one ( 1K > ), efficiency of 

the heating by the field of regular wave is higher than 
the heating by the noise field. 

The provided experiment show that in the cavity 
filled with the rare plasma, it is possible to realize the 
conditions for heating of plasma by exciting in the cavi-
ty several eigenmodes of the resonator. Note also that 
the scheme described above is relevant only to the heat-
ing of the plasma at relatively low field strengths. If the 
power source rf oscillations (magnetron) which excites 
resonator close to 150 kW or more, in the cavity devel-
oping a modified decay. The fields excited thus are 
ramdon and there is no need for realization of the de-
scribed mechanism.  

This work was supported in part by special-purpose 
program “Perspective study of plasma physics, con-
trolled thermonuclear fusion and plasma technologies.” 
(Order of Presidium of the National Academy of Sci-
ences of Ukraine № 151 of 12 March 2014). 
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СТОХАСТИЧЕСКИЙ НАГРЕВ ЗАРЯЖЕННЫХ ЧАСТИЦ  
В ОТСУТСТВИЕ РЕЗОНАНСОВ ПЕРВОГО ПОРЯДКА 

А.Н. Антонов, В.А. Буц, Е.А. Корнилов, В.Г. Свиченский, В.В. Кузьмин, А.П. Толстолужский 
Исследуется динамика заряженных частиц во внешних электромагнитных полях в отсутствие резонан-

сов, пропорциональных первой степени напряженности электромагнитного поля. Исследуются две схемы. В 
первой предполагается наличие нескольких регулярных электромагнитных волн. Предполагается, что часто-
ты и волновые векторы этих волн таковы, что фазовая скорость волн биения близка к тепловым скоростям 
частиц. Существенно, что таким образом организованные черенковские резонансы пропорциональны квад-
рату малого параметра (квадрату безразмерной напряженности поля). Во второй схеме предполагается, что 
фаза поля волны изменяется скачком по случайному закону. Найдены параметры изучаемых систем, при 
которых имеет преимущество одна или другая схема передачи энергии поля частицам. 

СТОХАСТИЧНЕ НАГРІВАННЯ ЗАРЯДЖЕНИХ ЧАСТИНОК  
У ВІДСУТНОСТІ РЕЗОНАНСІВ ПЕРШОГО ПОРЯДКУ 

О.М. Антонов, В.О. Буц, Є.О. Корнілов, В.Г. Свіченський, В.В. Кузьмін, О.П. Толстолужський 
Досліджується динаміка заряджених частинок у зовнішніх електромагнітних полях при відсутності резо-

нансів, які пропорційні першому ступеню напруженості електромагнітного поля. Досліджуються дві схеми. 
У першій передбачається наявність декількох регулярних електромагнітних хвиль. Передбачається, що час-
тоти і хвильові вектори цих хвиль такі, що фазова швидкість однієї з хвиль биття близька до теплових шви-
дкостей частинок. Істотно, що таким чином організовані черенковські резонанси пропорційні квадрату ма-
лого параметра (квадрату безрозмірної напруженості поля). У другій схемі передбачається, що фаза поля 
хвилі змінюється стрибком за випадковим законом. Знайдено параметри досліджуваних систем, при яких 
має перевагу одна або інша схема передачі енергії поля частинкам. 
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