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It is shown that a condition of occurrence of regimes with chaotic behavior of dynamic systems demands more 

steadfast studying. In particular, it is shown that if we will take into account singular solutions the chaotic behavior 
will be inherent also in systems with one degree of freedom. It is shown that linear systems can generate chaotic 
dynamics. The question about necessity of local instability for realization of chaotic regimes is discussed.  
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INTRODUCTION 
As it is known, for realization of chaotic regimes in 

considered dynamic system performance of following 
conditions are necessary: 1. The system should have 1.5 
or more degrees of freedom. 2. It should be nonlinear. 3. 
In phase space local instability should develop. It is pos-
sible to name these three conditions as paradigms of 
dynamic chaos. In this or that forms they are formulated 
in all books and the reviews devoted to dynamic chaos 
(see, for example, [1]).  

Below we will discuss these conditions. Some words 
about an essence of these conditions. They, certainly, all 
are necessary for a certain class of dynamic systems. 
Necessity for the phase space to have three or more di-
mension follows from the uniqueness theorem. Really in 
two-dimensional phase space it is impossible to realize 
mixing of integrated curves without intersection. Fur-
ther, for realize mixing phase trajectories in restricted 
phase area it is necessary that they ran away from each 
other, i.e. local instability is necessary. And, at last, as 
the real system is described in restricted phase space, 
nonlinearity is necessary for returning.  

However we know that except usual solutions of the 
differential equations there are singular solutions. In 
points of singular solutions the uniqueness theorem is 
broken. Therefore it is possible to expect that if we will 
take into account these singular solutions the regimes 
with chaotic behavior will be inherent also for dynamic 
systems with one degree of freedom. In the second part 
we will show that really such dynamics takes place.  

Usually at studying of linear systems nobody is ori-
ented on studying of chaotic regimes. Really in linear 
systems they are absent. However it is very frequent at 
studying of linear systems that it is convenient to intro-
duce new dependent, and independent variables. At this 
the linear mathematical model becomes nonlinear. The 
well known example is the transition from the equations 
of quantum mechanics to the equations of classical me-
chanics, and also the transition from the wave equations 
to the equations of geometrical optics. In all these new 
nonlinear systems the regimes with dynamic chaos are 
possible. In the third partition we show that it is enough 
general situation.  

In the conclusion the results and their connection 
with known results are discussed.  

1. CHAOTIC DYNAMICS OF SYSTEMS 
WITH “ONE” DEGREE OF FREEDOM 
Let’s look at the first paradigm that regimes with 

dynamic chaos are possible only in the dynamic systems 
which number of degrees of freedom is more or equally 

to 1.5. The cause of occurrence of this paradigm is that 
fact that for realization of chaotic dynamics the mixing 
of trajectories in phase space is necessary. The phase 
space of systems with one degree of freedom represents 
a plane. Owing the theorem of uniqueness on plane such 
intersection can not to be. This conclusion, certainly, is 
true. However it is true only to class of the differential 
equations which have no singular solutions. As it is 
known, in the presence of singular solutions on trajecto-
ries corresponding to these solutions, the uniqueness 
theorem is broken. In this case the arguments formu-
lated above about impossibility of chaotic dynamics in 
systems with one degree of freedom cease to work. Be-
low we will show that in systems with one degree of 
freedom in the presence of singular solutions chaotic 
regimes are possible. It is the main result of this part. 
Clearly that singular solutions are characteristic and for 
systems with a great number of degrees of freedom. In 
these systems the regimes with dynamic chaos, which 
are caused by presence of these singular solutions, also 
are possible. However in these systems occurrence of 
such regimes is not surprising. Therefore below we will 
concentrate our attention on systems with one degree of 
freedom. It is necessary to notice that, getting on a sin-
gular solution, in points where the uniqueness theorem 
is broken, the system, in the general case, "does not 
know" the further trajectory. The choice of the further 
trajectory is defined by any external, even as much as 
small perturbation. Presence of these perturbations for-
mally transforms system with one degree of freedom 
into system with one and a half degree of freedom. We 
will notice that the size of this perturbation can be as 
much as small, up to what inevitably arise at numerical 
research of studied model. 

As a characteristic example we will consider dynam-
ics of system which is described by following equations: 
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The phase portrait of system (1) is presented on pic-
ture 1. Integral curves in this case are circles:  

( )2 2 2
0 1 0x R x Rϕ = − + − =    (2) 

and the circle centers settle down on an axis 1 0x = . Ra-
diuses of these circles are equal to distance of these cen-
tres to zero point ( 0 10; 0x x= = ). This point is the com-
mon for all circles. Besides, this point is a singular solu-
tion of system (1) (see below). The system (1) was ana-
lyzed numerically. Results are presented in drawings 1-
6. In the second and third drawings characteristic de-
pendences of a variable 0x  on time are presented. Com-
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paring Fig. 1 to Fig. 2 and 3, it is possible to make the 
conclusion that a representative point, moving on one of 
circles after crossing the zero point gets on other circle.  

 
Fig. 1. Phase portrait of system (1) 

 
Fig. 2. Time dependence of the variable 0x . Transitions 
of representative points from one circle on another are 

visible 

 
Fig. 3. Time dependence of the variable 0x . 

( 50 85t≤ < ) 

 
Fig. 4. Phase portrait 

 
Fig. 5. Spectrum of the variable 0x  

 
Рис. 6.  Correlation function of the variable 0x  

Transferring from one circle on another is well visi-
ble on a phase plane (Fig. 4). And, transferring from one 
circle on another circle occur under the casual law. 
Really, the spectral analysis of dynamics of system (1) 
shows that spectrums of this dynamics are wide (see 
Fig. 5), and correlation function enough quickly falls 
down (Fig. 6).  

Let's notice that casual the transitions from one cir-
cle to another at crossing zero point depend on accuracy 
of the computation. Changes, for example, a step of 
calculations change concrete character of these transi-
tions. However, as a whole statistically, dynamics re-
mains the same.  

Let's show now that the zero point is a singular solu-
tion of system (1). At that, we will understand as singu-
lar solution those solutions on which points the unique-
ness theorem is broken. Really, this point belongs to 
family of circles (2). The Same circles are integral 
curves of system (1). These integral curves are conven-
ient rewrite in a such kind: 2

1 0 0/x x x R+ = . From a kind 
of these integral curves follows that in vicinity of zero 
point the Lipchitz conditions for system (1) are violated. 
Really, the Lipchitz conditions for system (1) can be 
written down in a kind: 

( )
2 2
1 1

0 0 1 1
0 0

x x L x x x x
x x

− ≤ − + −
%

% %
%

,   (3) 

where L − positive constant. 
In vicinity of zero point the left part of inequality (3) 

can be estimated by size ( )R R−% , where R% and R  ra-

diuses of two arbitrary circles. Generally, differences of 
these radiuses can be arbitrary size. Thus, in zero point 
the Lipchitz condition is not carried out, i.e. conditions 
of the theorem of uniqueness for system (1) are violated. 
Besides, taking partial derivative of function (2) on 
R and equating it to zero, we find that really point 
( 0 10; 0x x= = ) is a singular solution of system (1), and 
also it is envelope line around integral curves.   

The system (1) is not unique. It is possible to show 
that for example dynamics of system which is described 
by set of equations 

0
0 1 1 1

dx x x x F
dt

γ= ⋅ + ⋅ ≡ , 2 41
1 0 0 2

dx x x x F
dt

γ= − − ⋅ ≡  (4) 

also appears chaotic dynamics. Moreover, sets of such 
systems can be constructed. We will show how such set 
can be constructed. Let we have an integral curve which 
is specified by the equation: ( )0 1, 0x xϕ = . Then the set 
of equations for which this integrated curve will be as 
integral, can be presented in a following kind: 
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( ) ( )
1

0
1 0 1 0

1

, , ,dx F x x M x x
dt x

ϕϕ ∂
= −

∂
; 

( ) ( )
1

1
2 0 1 0

0

, , ,dx F x x M x x
dt x

ϕϕ ∂
= +

∂
,  (5) 

where 0 1( , , )sF x xϕ − arbitrary functions, which has  

properties: 0 1(0, , ) 0sF x x = ; ( )
10 ,M x x − arbitrary func-

tion. 
Using system (5), it is possible to construct the big 

diversity of the dynamic systems possessing the neces-
sary properties. As an example we will consider a case 
when integrated curves is the family of circles with ra-
dius R . 

   ( )2 2 2
0 1 0x R x Rϕ = − + − = .                      (6) 

Set of integral curves (6) are presented in Fig. 1. By 
choosing of functions sF  and M  it is possible to 
achieve an elimination of parameter R from set of equa-
tions (5). Really, let us choose these functions in a kind: 

1 0F = ; ( )2 0 1,F f x xϕ= ⋅ ; ( )0 0 1M x f x x= − ⋅   

here ( )0 1f x x  − an arbitrary function. Substituting these 
expressions in system (5), we will get set of equations in 
which the parameter R is already excluded: 

( )0
0 1 0 12dx x x f x x

dt
= ⋅ ⋅ ; ( ) ( )2 20

1 0 0 1 .
dx

x x f x x
dt

= − ⋅     (7) 

Choosing function ( )0 1f x x in a kind 

( )0 1 01 / 2f x x x= , we will get set of equations (1). Dy-
namics of this system is chaotic. It is presented in 
Fig. 1-6. 

Let's point out in one another possibility of construc-
tion of systems of the differential equations with one 
degree of freedom which dynamics can display chaotic 
character. Let we have two families of integral curves 

( )1 0 1, 0x xϕ = and ( )2 0 1, 0x xϕ = . Using set of equations 
(5), it is easy to find system of the differential equations 
which solutions are these integral curves:  

0 2 1
1 1 0 1 2 2 0 1

1 1

( , , , ) ( , , , )dx F x x t F x x t
dt x x

ϕ ϕϕ ϕ∂ ∂
= −
∂ ∂

, 

1 2 1
1 1 0 1 2 2 0 1

0 0

( , , , ) ( , , , )dx F x x t F x x t
dt x x

ϕ ϕϕ ϕ∂ ∂
= − +

∂ ∂
, (8) 

here 0 1( , , , )s sF x x tϕ − the arbitrary functions possessing 
property 0 1(0, , , ) 0sF x x t = . Imposing on integral curves 
and on function sF  necessary conditions it is possible to 
construct extensive enough set of the dynamic systems 
possessing chaotic dynamics. 

2. THE DYNAMIC CHAOS GENERATED 
BY LINEAR SYSTEMS 

In works [2-5] examples when linear dynamic sys-
tems generate chaotic dynamics of studied systems are 
in detail enough considered. Below we will shortly de-
scribe the key moments of such consideration. Let for us 
is available three linear connected oscillators. Two of 
them are identical. Frequency of the third slightly dif-
fers from frequency of two others. Set of equations 
which describe this dynamic system, it is possible to 
present in a kind: 

( )

0 0 1 1 2 2

1 1 1 0

2 2 2 01

q q q q
q q q
q q q

μ μ
μ

δ μ

+ = − −
+ = −

+ + = −

&&

&&

&&

,             (9) 

where ,dqq
dτ

≡&  1δ << , 1iμ <<  connection coeffi-

cients. 
As coefficients of coupling are small, (9) it is con-

venient to search the solution of these equations in a 
form: 

( )( ) expi i iq A i tτ ω= .                         (10) 
In the solution (10) dependence of complex ampli-

tudes ( )iA τ on time is caused by connection presence 
between oscillators. In that case when this connection is 
small, it is possible to consider that these amplitudes are 
slowly changing functions. For a finding of these ampli-
tudes it is possible to use averaging method. As a result 
we will get the following system of the linear truncated 
equations for these amplitudes:  

0 1 1 2 22 exp( )iA A A iμ μ δτ= − −&  

1 1 02iA Aμ= −&         2 2 02 exp( )iA A iμ δτ= − −& .  (11) 
For the further analysis of dynamics of complex am-

plitudes ( )iA τ  we will present them in a kind: 
( ) ( ) exp( ( ))i i iA a iτ τ ϕ τ= ,   (12)  

here ia , iϕ  − real amplitudes and real phases.  
The transformation (12) is key transformation for us. 

It transforms linear set of equations (11) into the nonlin-
ear. We will notice that such transformation is widely 
used in the physics, especially in the radiophysics. Sub-
stituting (12) in (11) for a finding of the real amplitudes 
and phases, we will get the following set of equations:   

( ) ( ) ( ) ( )0 1 1 2 2 1/ 2 sin / 2 sina a aμ μ= − ⋅ Φ − ⋅ ⋅ Φ& , 

( ) ( )1 1 0/ 2 sina aμ= ⋅ Φ&        ( ) ( )2 2 0 1/ 2 sina aμ= ⋅ Φ& , 

( ) ( ) ( ) ( )0 1 2
1 2 1

1 0 0

/ 2 cos / 2 cosa a a
a a a

μ μ
⎛ ⎞ ⎛ ⎞

Φ = − Φ − Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

& ,(13) 

( ) ( ) ( ) ( )0 2 1
1 2 1 1

2 0 0

/ 2 cos / 2 cosa a a
a a a

μ μ δ
⎛ ⎞ ⎛ ⎞

Φ = − Φ − Φ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

& , 

where 1 0 1 2 0,ϕ ϕ ϕ ϕ δτΦ ≡ − Φ ≡ − + . 
The set of equations (13) is the simplified system in 

comparison with initial system (9). However this system 
is nonlinear. Generally, dynamics of such system can be 
chaotic. It is possible to show that its dynamics is simi-
lar to dynamics of two nonlinear connected oscillators. 
The condition of a overlapping of these nonlinear reso-
nances is condition for regimes with chaotic dynamics 
occurrence. This condition is simple and looks like: 
( )1 2μ μ δ+ > . Here δ  − is distance between nonlinear 
resonances. More detailed results of investigation of 
system (13), the analytical estimations of conditions of 
dynamic chaos occurrence, and also results of numerical 
researches are represented in [2-4].  

2.1. QUANTUM SYSTEMS 
The appearing the regimes with chaotic motion in 

quantum systems are special interest. Below we will see 
that such regimes are quite inherent to quantum sys-
tems. At this the key model is three-level systems, but 
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not two-level systems. Really set of equations (11) is 
equivalent to system which is used for description of 
quantum three-level system under influence on it the 
perturbation. We will show it. We will consider quan-
tum system which is described by such Hamiltonian: 

0 1
ˆ ˆ ˆ ( )H H H t= + .                      (14) 

The second summand in the right part describes per-
turbation. Wave function of system (14) is subject to 
Schrödinger equation. The solution of the Schrödinger 
we will search in the form of a series on own functions 
of unperturbed system: 

( ) ( ) exp( )n n n
n

t A t i tψ ϕ ω= ⋅ ⋅∑ ,   (15) 

where /n nEω = h ;     0
ˆn

n n ni H E
t
ϕ

ϕ ϕ
∂

= = ⋅
∂

h . 

Let’s substitute (15) in Schrödinger equation and by 
usual way we can get system of equations for complex 
amplitudes nA : 

( )n n m m
m

i A U t A⋅ = ⋅∑&h ,    (16)  

where 1
ˆ ( ) exp[ ( ) / ]n m m n n mU H t i t E E dqϕ ϕ∗= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅∫ h . 

Let’s consider the more simple case - the case of 
harmonic perturbation: 1

ˆ ˆ( ) exp( )H t U i t= ⋅ Ω . Then the 
matrix elements of interaction will get following ex-
pression: 

 exp{ [( ) / ]}n m n m n mU V i t E E= ⋅ ⋅ − +Ωh ,    
ˆ

n m n mV U dqϕ ϕ∗= ⋅ ⋅∫ .     (17) 
Let's consider dynamics of three-level systems 

( 0 , 1 , 2 ).   
We will consider that the frequency of harmonic 

perturbation and own energy of these levels satisfy to 
such conditions: 

1, 0m n= = ,    1 0E EΩ = −h ;     2, 0m n= =    

2 0( ) E EδΩ+ = −h     δ << Ω .    (18) 
These relations specify in that fact that frequency of 

external perturbation is resonant for transitions between 
zero and the first levels, and energy of the third level is 
slightly differs from energy of the second level. Using 
these relations in system (16) it is possible to leave only 
three equations: 

0 01 1 02 2 exp( )i A V A V A i tδ⋅ ⋅ = + ⋅ ⋅ ⋅&h ; 

1 10 0i A V A⋅ ⋅ =&h ; 2 20 0 exp( )i A V A i tδ⋅ ⋅ = ⋅ − ⋅ ⋅&h .  (19) 
Let matrix elements of interaction of the direct and 

the backward transitions are equal ( 0 0 , ( 1;2)i iV V i= = ). 
Then from (19) we can find the following connection 
between squares of complex amplitudes nA : 

( )2 2 2
0 1 2 2 0 22 sind A A A A A

d
μ δτ

τ
⎡ ⎤− − = ⋅ ⋅⎣ ⎦ .   (20) 

From this relation follows that if the third level coin-
cides with the second (two-level system, 0δ = ) the 
system (19) has only one degree of freedom. Develop-
ment of dynamic chaos in such system is impossible. 
Above we saw that the size δ  defines distance between 
nonlinear resonances. For the further analysis of dynam-
ics of the complex amplitudes ( )iA τ we will present 
them in a kind: 

( ) ( ) exp( ( ))i iA a iτ τ ϕ τ= .   (21) 
It’s clearly that dynamics of such quantum system 

will be similar to dynamics of system (13), i.e. in it the 
regimes with dynamic chaos are possible. It is necessary 
to notice that these regimes can correspond to essen-
tially quantum values of the parameters (not quasi-
classical). Results of more detailed studying of dynam-
ics of such quantum system are contained in [5].  

2.2. MORE COMPLICATED SYSTEMS 
The examples considered above are simple enough. 

We knew (in second part) an analytical kind of integral 
curve these systems. This fact has allowed us to define 
solutions and areas of phase space in which the unique-
ness theorem is not carried out. We have only three lin-
ear oscillators in third part. In more complex cases such 
possibility arises seldom enough, therefore it would be 
desirable to find more simple and general criteria which 
will allow to define areas of phase space in which ex-
hibiting of elements of unpredictability is possible.  

One of possibilities consists in measure use. Really, 
let we will introduce of the measure of «an interval» 

xΔr : ( )ip x xμΔ = ⋅Δ
r r . Here ( )ip xr − is density of prob-

ability that this representative point is inside this inter-
val. Let, as a result of time dynamics of considered sys-
tem, the point ixr  passes in a point zr . Thus, we have 

( )iz f x=
rr

− a image of a point ixr ; and the point ixr is 
preimage of zr . The number of prototypes (preimages) 
can be many. We will consider now certain "piece" zΔr : 
[ ]/ 2; / 2z z z z− Δ + Δ
r r r r . The measure of this piece will 

be defined now by the formula: 
( ) ( )z i i

i

g z z p x xμΔ = ⋅Δ = ⋅Δ∑ r rr r .            (22) 

Here ( )g zr  − density of probability to find of a repre-
sentative point in phase volume zΔr . From this formula 
we find expression for density ( )g zr : 

   ( )( ) ( ) i i
i

i i i

x p xg z p x
z J

Δ
= =

Δ∑ ∑
r r

rr
r .              (23) 

Here iJ  − Jacobean transformations of new variables 
through old variables.  

The formula (23) practically is the Perron-Frobenius 
formula. From this formula it is visible that in those 
areas where Jacobean transformations will have any 
singularity (for example, to go to infinity or to zero), is 
possible to expect that relations between initial density 
of probabilities and transformed − become uncertain. 
These areas can be sources of chaotic motion.  

CONCLUSIONS 
Thus, abandoning from the theorem of uniqueness 

essentially increase quantity of the dynamic systems 
having regimes with chaotic behavior. However it is 
necessary to remember that the chaotic behavior in this 
case by their nature differs from dynamic chaos. This 
chaos in dynamic systems is generated by not consid-
ered casual forces. These forces can be as much as 
small, but they define a trajectory of integral curves 
when they pass through ambiguity area. For this cause 
we in the title of the second part used inverted commas 
when we spoke about one degree of freedom. Actually 
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the behavior of such dynamic system with one degree of 
freedom is defined by as much as small numerical fluc-
tuations. The real systems constructed on such model, 
also will chaotically behave. It’s absolutely clearly that 
the considered mechanism of occurrence of chaotic dy-
namics will be inherent also for systems with a great 
number of degrees of freedom. In particular, dynamics 
of system (13) can chaotically behave as a result of such 
mechanism. Really, for values of the amplitudes which 
are going to zero ( 0ia → ), there is an infringement of 
the theorem of uniqueness. Therefore, generally, the 
chaotic behavior of system (13) can be caused as occur-
rence gomoclinic structures (when nonlinear resonances 
overlapped), and as a result of infringement of the theo-
rem of uniqueness.  

To distinguish these two mechanisms of occurrence 
of chaotic dynamics, in general cases, difficultly. How-
ever it can be made thus (by such way). At the chaotic 
dynamics caused by dynamic processes, the combina-
tion of some functions for example, such as 

( )( ) cos ( )i ia τ ϕ τ or ( )( )sin ( )i ia τ ϕ τ , will behave regu-
larly, despite fact that each of multipliers of this func-
tion behaves chaotically. Really, each of these combina-
tions, according to the formula (12) represents simply 
real and imaginary part of the function which dynamics 
is regular. This fact is similar to known result that the 
combination of the functions representing integral, is 
conserved, despite chaotic behaviors of everyone the 
components, which are entering into this integral. If 
chaotic dynamics is caused by infringement of the theo-
rem of uniqueness any such combination of functions 
will remain chaotic because their dynamics it is defined 
by fluctuations (though as much as small). 

It is necessary to tell some words about local insta-
bility which are necessary for appearing of dynamic 
chaos. If the chaotic behavior in system is caused by 
infringement of the theorem of uniqueness, in general 
cases, presence of such instability is not necessarily. 
Really, let’s look at system (1). Its trajectories after 
crossing the zero point are going away from each other. 
However after it they again direct to the zero point and 
the distance between them contracts.  

Lyapunov's index calculated, for example, under the 
Benetin schema (see, for example, [1]) will be equal to 
zero. 
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ПАРАДИГМЫ ДИНАМИЧЕСКОГО ХАОСА 
В.А. Буц 

Показано, что условия возникновения режимов с хаотическим поведением динамических систем требуют 
более пристального изучения. В частности, показано, что если принять в качестве решений особые решения, 
то хаотическое поведение будет присуще и системам с одной степенью свободы. Показано, что линейные 
системы могут порождать хаотическую динамику. Обсуждается вопрос о необходимости локальной неус-
тойчивости для реализации хаотических режимов.  

 

ПАРАДИГМИ ДИНАМІЧНОГО ХАОСУ 
В.О. Буц  

Показано, що умови виникнення режимів з хаотичною поведінкою динамічних систем вимагають більш 
пильного вивчення. Зокрема, показано, що якщо прийняти в якості рішень особливі рішення , то хаотична 
поведінка буде притаманна й системам з одним ступенем свободи. Показано, що лінійні системи можуть 
породжувати хаотичну динаміку. Обговорюється питання про необхідність локальної нестійкості для реалі-
зації хаотичних режимів.  


