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It was shown that in general case explosive instability dynamics should be described as four wave interaction. 
The main difference from three wave interaction is that this dynamics may not contain explosive instability. Besides 
it may by irregular. If the characteristics of one of the wave is closed to one of the interacting wave and they are 
connected linearly then explosive instability may be suppressed. 
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INTRODUCTION 
Conception of wave with negative energy was found 

enough successful. Introduction of such waves essen-
tially simplified understanding of many processes taking 
place in moving and inverted matters. Existence of these 
waves allows to consider in another way on such proc-
esses as beam instabilities [1], in particular plasma-
beam instabilities, superradiation (see, for example, [2]). 
Essential interest is when decay takes place of negative 
energy wave into ones with positive energy. This proc-
ess may occur as explosive instability (see, for example, 
[3, 4]). The theoretical studying of explosive instability 
processes in many cases is limited by three wave inter-
action. In this case it is supposed that other waves are 
far from synchronism conditions with waves taking part 
in decay processes. But really in many cases besides 
negative energy waves the waves with positive energy 
with closed characteristic may exist. Such waves may 
influence on the dynamics synchronously interacting 
waves. 

The goal of this work is to investigate positive en-
ergy wave influence which is enough closed to negative 
energy wave on its characteristic (frequency, wave vec-
tor) on explosive instability process. It will be shown 
that existence of such waves may essentially change 
dynamics of explosive instability. The time of it arising 
may increase. It may be possible that it will not realize. 
The dynamics of such four wave interaction may be 
chaotic. 

Arising of the explosive instability may be useful 
process, for example, to excite oscillations. Besides, this 
process may be undesirable, for example, to transport 
flow of charged particles across plasma. In this case this 
process is needed to remove. Latter we will show that 
using whirligig principle [5], it is possible to suppress 
arising of explosive instability. 

In the section 1 the problem definition and basis 
equations that describe the linear and nonlinear interac-
tion of five waves have been formulated. This set of 
equations is transformed in particular cases in famous 
ones that describe the processes of ordinary decay, ex-
plosive instability and process of linear energy ex-
change between waves. In the section 2 the some ana-
lytical results of investigation of obtained set are pre-
sented. The numerical results are presented in section 3. 
In the section 4 the conditions of explosive instability 
suppression by means external electromagnetic wave 
that characteristics (frequency and wave vector) are 
closed to characteristics of one wave that takes part in 
nonlinear wave interaction are formulated.  

1. PROBLEM DEFINITION  
AND BASIC EQUATIONS 

Explosive instability may be realized in the physical 
systems of different types. The equations for complex 
slowly varying amplitudes are similar in these cases. 
We suppose that in the investigated system (this may be 
electrodynamics system filled with plasma) there are 
two closed waves one of them has negative energy. It is 
supposed that wave frequencies of the interacted waves 
obey such relations 
 11,12 1 δωΩ = Ω ± , (1) 
where Ω11,12 – nearly located natural frequencies of the 
investigated system ( 1 δωΩ ) such that wave 11 has 
positive energy and wave 12 has negative energy. Both 
waves have identical wave number k1. Besides we sup-
pose that in this system there are two natural waves that 
frequencies are less than Ω11,12. We will consider inter-
action the first pair of wave (11 and 12) with mode 2 
and 3 that is realized in the next way: 

 12 2 3

1 2 3
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,
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where Ω2,3 – frequencies of third and fourth waves (the 
natural waves of system) taking part in the interaction, 
k2,3 – their wave numbers. Such nonlinear interaction 
usually causes excitation of the explosive instability. If 
in the expression (2) index 12 to replace on 11 this way 
will be correspond to decay process. Diagram of inter-
acting waves is presented in the Fig. 1. We will consider 
case when the frequencies satisfy for following inequal-
ity: 
 12 2 3 11Ω ≤ Ω +Ω ≤ Ω . (3) 

Besides, we will suppose that there is one wave also 
(with index 4) that has the frequency and wave vector 
closed to one wave taking part in nonlinear interaction. 
These waves are connected linearly. As it will be seen 
latter existence of this wave allows to suppress explo-
sive instability arising. 

The set of shortened equations for dimensionless 
complex slowly varying amplitudes of all interaction 
waves was obtained in the ordinary way from the Max-
well equations and hydrodynamics ones and look like: 
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where E11, E12, E2, E3, E4 (E→eE/(mcω) m − electron 
mass, с – light velocity) dimensionless complex slowly 
varying amplitudes of the interacting waves, µ – dimen-
sionless coefficient. Dimensionless time τ is measured 
in the period of Ω1 frequency. Further the dimensionless 
frequencies are used. ω2 =Ω2/Ω1, ω3 = Ω3/ Ω1, ∆ –
characterizes synchronism conditions of waves 2 and 3 
with modes 11 and 12 which are defined by correlation  
 2 3 1ω ω+ = −Δ . (5) 

 
Fig. 1. Diagram of the wave interaction with positive 
(11) and negative (12) energy with any other waves 

of the physical system (2 and 3) 
When there is synchronism second and third wave 

with 12 mode the condition ∆ = δω is satisfied. If there 
is synchronism with wave 11 then ∆ = - δω. E4 – com-
plex amplitude of wave that may be linearly connected 
with one of modes taking part in nonlinear interaction. 
In this case this wave interacts with wave 12. As it will 
be shown latter the role of this wave is such as if it in-
teracts with any other wave that taking part in nonlinear 
interaction. Lμ – coefficient of linear connection. 

2. RESULTS OF ANALYTICAL 
INVESTIGATION  

First of all we will consider case when wave 4 is ab-
sent (μL  = 0). In this case some important results may 
be obtained analytically from set of equation (4). First 
of all it has following integral: 
 2 2

2 3E E const− = . (6) 
There is analogous integral in the set of equations 

describing three wave explosive process. It is following 
from this condition that amplitudes of the second and 
third waves may infinitely increase but their difference 
is constant. Thus taking in account of fast wave 11 does 
not cause breakdown of explosive instability. 

When condition ∆ = δω = 0 is satisfied there is also 
integral in the set (4)  
 11 12 0E E C+ = , (7) 
and for slowly varying complex amplitudes of waves 2 
and 3 it is obtained following expressions: 
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It is following from expressions (8) that modes 2 and 
3 exponentially growth when ∆ = δω = 0. It may obtain 
analogous expressions for amplitudes of waves 11 and 
12. The difference is that coefficient in exponent is 
equal 2|C0|. In general case the condition ∆ = δω = 0 
does not satisfy. But it is approximately correct in the 
time intervals τ << 1/δω, that may be large for small 
values of detuning δω. In this case the integral (7) and 
correlations (8) are satisfied approximately. This growth 
is pure nonlinear and is not connected with linear insta-
bilities that may exist in the investigated system. This is 
confirmed by numerical results.  

The limiting cases may be obtained from set (4), i.e. 
decay instability of fast wave 11 and explosive instabil-
ity of slow wave 12. We will consider only cases when 
waves 2 and 3 are in synchronism with either fast mode 
11 or slow mode 12 (see correlations (3) and (5) and 
comment after (5)). In each of these cases there are ex-
ponential oscillating multipliers and terms in the equa-
tions (4). Averaging on the time intervals 1/ (2 )τ δω  
these terms will be equal to zero.  

Thus if there is synchronism waves 2 and 3 with 
slow mode 12 (∆ = δω) the oscillating term is in the 
right part of the equation for fast wave amplitude (E11) 
and first addends in the equations for waves 2 and 3. 
After averaging the set (4) is transformed in the one 
describing explosive instability. If there is synchronism 
waves 2 and 3 with fast mode 11 (∆ = – δω) oscillating 
addend will be contained in the right part equation for 
slow wave (E12). The second addends in the equations 
for 2 and 3 modes will be oscillating. After averaging 
we will obtain set of equations describing decay process 
of fast mode 11. 

3. RESULTS OF NUMERICAL 
INVESTIGATION 

The main goal of numerical investigation was defini-
tion of features of four wave interaction dynamics when 
there is synchronism of natural waves 2 and 3 as with 
slow wave 12 as with fast one 11. As it was noted above 
in the first case the condition ∆ = δω is satisfied and in 
the second case ∆ = – δω is satisfied. For following 
values δω = 1.0⋅10-6, 0.001, 0.01, 0.1, 0.2; µ = 1 the 
numerical calculation was performed for each of these 
cases. The following initial conditions were selected 
E110 = E120 =0.1, E20 =0.003, E30 = 0.001. Here the digit 
0 in index points on amplitude initial value of corre-
sponding wave. Practically in all cases initial values of 
mode 11 and 12 were selected more larger than ones of 
wave 2 and 3. It is convenient graphically to present 
numerical investigations results in logarithm scale. 
Temporal dependence of logarithm of amplitude module 
of wave 12 is presented on Fig. 2 for case when waves 2 
and 3 is synchronized with them and ∆ = δω = 1.0⋅10-6.  

As it is seen from this figure depending from initial 
conditions there is moment when in the wave dynamics 
appears exponential growth that is corresponding with 
analytical conclusion presented in section 2. Later this 
growth is changed by explosive growth of amplitude. 
The dynamics of others modes is similar that is pre-
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sented on Fig. 2. Qualitatively similar dynamics is ob-
served for other values of δω at synchronism wave 2 
and 3 with slow wave 12. When δω increase time corre-
sponding explosive growth at the beginning decreases 
after slightly increase and stop on value τ ~48. 

 
Fig. 2. Dynamic of modules of amplitude wave 12. 
∆ = δω = 1.0⋅10-6, µ = 1.0, E110 = E120 =0.1, 

E20 =0.003, E30 = 0.001 
Explosive instability arises at synchronism natural 

modes 2 and 3 with fast wave 11 for values  
δω = 1.0⋅10-6, 0.001, 0.01, 0.1 too. Besides visually the 
process is seen identical that is observed for same values of 
δω for synchronism with slow wave 12. The picture quali-
tatively is changed for δω = 0.2 and presented in Fig. 3. 

 
Fig. 3. Dynamics of wave 12 with negative energy at 
∆ = – δω, δω = 0.2. Red curve corresponds to real part 

of amplitude, green corresponds to imaginary part 
of one and blue corresponds to module 

The exponential growth does not observe here. This is 
conditioned that it duration is τ ~1/ δω ~ 10 time units. 
Explosive instability is observed more latter than at syn-
chronism with explosive mode 12. On the time interval 
from beginning to explosive instability process is oscillat-
ing and irregular. There is energy exchange between 
waves that is typical for interaction fast wave 11 having 
positive energy with 2 and 3 waves. Irregularity of proc-
ess is confirmed by spectrum and autocorrelation analy-
sis. Spectrum and autocorrelation function for slowly 
varying complex amplitude of wave 2 are presented in 
Figs. 4 and 5. As it is seen from this figures spectrum is 
enough wide and autocorrelation function decreasing. 

Time of explosive instability beginning in this case 
is very sensitive to initial conditions. The initial ampli-
tude of fast wave 11 in the process presented in Fig. 3 
was equal 0.1 of dimensionless units. If this value was 
0.099 time of explosive instability beginning increased 
to 700 time units. Oneself process in this case qualita-

tively is similar that is presented in Fig. 3. Spectrum and 
autocorrelation function are similar that presented in 
Figs. 4 and 5. This point out that there is parameters and 
initial conditions region where four wave interaction 
dynamics will be unstable. 

 
Fig. 4. Spectrum of real part of wave 2 (Re(E2))  

amplitude for realization presented on Fig. 3 

 
Fig. 5. Autocorrelation function of the real part of wave 
2 (Re(E2)) amplitude for realization presented on Fig. 3 

Numerical simulation was performed for case when 
wave 2 and 3 are in synchronism with negative energy 
wave 12 which initial value is equal zero. Numerical 
simulation was carried out for δω = 1.0⋅10-6, 0.001, 
0.01, 0.1. In the first three cases explosive instability 
arose. At the beginning on the exponential growth stage 
amplitudes of wave 12 with negative energy and modes 
2 and 3 are increasing. Latter the wave 11 having large 
initial value is included in the growth process. Latter 
exponential growth transfers into explosive instability. 
When detuning δω increaseы to value 0.1 interaction 
between waves at selected initial conditions is stopped 
and explosive instability in this case does not excite. 
Amplitudes of all waves in this case weakly oscillate. 
When initial value of wave 12 with negative energy is 
equal zero and δω <0.1, at the beginning energy from 
wave with positive energy 11 transfers to other modes 
of system. Latter when contribution of wave with nega-
tive energy is essential the explosive instability is ex-
cited. From set (4) it follows that at selected initial con-
ditions the right parts of equations are quadraticly small 
and time of exponential growth is not enough for essen-
tial increasing of amplitudes of interacting waves.  

The dispurtion of explosive instability at increasing 
of δω does not occur discontinuously. When δω come 
up to 0.1 on the left, time interval from the process be-
ginning to arising explosive instability increases to infi-
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nite. The initial value of slow wave 12 was increased to 
0.0451. In the range from 0.0 to 0.0451 wave interaction 
was absent. It appear when initial values was  
E120 =0.045155 and is completed by explosive instability. 

The role of approximate integral (7) that is correct in 
the beginning stage of process before influence of expo-
nential multipliers was noted above. May be occur that 
modules of initial values of complex amplitudes of 
wave 11 and 12 are equals and phases will different on 
π. In this case initial exponential growth is absent. To 
define influence of initial phases of complex amplitudes 
of wave 11 and 12 on investigated four wave interaction 
the following parameters were selected: ∆ = δω = 1.0⋅10-6, 
µ=1.0, |E110|=|E120| =0.1, |E20|=0.003, |E30| = 0.001. 
Waves 2 and 3 are synchronized with negative energy 
wave 12. The initial phase of complex amplitude of fast 
wave 11 changes in range from 0 to π. The initial phases 
of complex amplitudes of other waves were zero. Nu-
merical results are presented in Table 1. In the first and 
third rows the initial phases are presented. In the second 
and fourth rows the time of explosive instability begin-
ning is presented. When 110φ π=  excitation time of ex-
plosive instability is 6700 time units. 

Table 1 
Excitation time of explosive instability versus initial 

phase of complex amplitude of fast wave 11 

110φ  0 0.1π 0.2π 0.3π 0.4π 
τ expl 60.6 61.3 63.4 67.2 73.3 

110φ  0.5π 0.6π 0.7π 0.7π 0.9π 
τ expl 82.5 97.1 121 170 305 

 

In the Table 2 the numerical results for two cases of 
synchronism are presented. Here the initial phase of fast 
wave 11 is equal π and detuning δω is changed. The 
following parameters were used µ = 1.0, |E110| = |E120| 
=0.1, |E20| =0.003, |E30| = 0.001, φ10 = π, φ20 = φ30 =0, 
φ20, φ30 initial phases of 2 and 3 waves correspondingly.  

Table 2 
Excitation time of explosive instability versus detunin δω 

δω 0.000001 0.001 0.01 0.1 0.2 
τ expl, ∆=δω 6700 260 87 47 47 
τ expl, ∆=-δω 6700 260 87 61 62 

 

 
Fig. 6. Dynamics of process described by equations (4) 

(wave 2) for following parameters: ∆ =– δω=0.2,  
µ = 1.0, |E110| = |E120| =0.1, |E20| =0.003, |E30| = 0.001, 
φ110 = π, φ20 = φ30 =0.0. Red curve corresponds to real 

part of complex amplitude, green – to imaginary 
and blue – to module 

As it seen from this table excitation time of explo-
sive instability is same for two synchronization variants 
in the detuning range from 0 to ~ 0.01. The slowly 
changing amplitudes dynamics of all waves for these 
two synchronization variants is practically identical. 
Modules of amplitudes monotonously growth. Latter for 
more values of detuning differences appear. Modules 
become oscillating. Essentially this is seen for detuning 
δω = 0.2, that is shown on the Fig. 6. 

4. SUPPRESSION OF EXPLOSIVE 
INSTABILITY  

4.1. GENERAL CONDITIONS 

In this section we will show that existence of addi-
tional wave that is linearly connected with one of the 
nonlinearly interacting modes may cause suppression as 
decay instability as explosive one. To prove this fact we 
rewrite the set of equations (4) more simply: 
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In this set we retained only that waves that is in the 
exact synchronism one with each other. Besides we 
suppose that negative energy wave decay takes place. 
Let notice that if we change the sign before first item in 
the right part of the first equation in (9) then such sys-
tem at μL = 0 will describe decay instability.  

Below we will show that addition of the fourth wave 
(E4) can suppress both decay processes, and process of 
explosive instability. It is necessary to notice that in set 
(9) we have considered connection only a first wave with 
a stabilization wave (fourth). The same results turn out 
and when any other wave (the first or the second waves) 
will be involved in process of stabilization interaction. 
We assume, according to the general ideology that decay 
instability will be suppressed as soon as there will be 
fulfilled condition 12/ 2 (0)L Eμ μ> . The left part of this 
inequality is frequency of exchange energy between the 
stabilization wave and one of the waves participating in 
three-wave interaction. The right part is increment of 
decay instability. We will analyze system (9) by numeri-
cal methods. For this purpose it is convenient to enter 
following parameters and new real variables: 
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The usual decay process is observed if the stabilizing 
wave is absent (ε = 0). The stabilization process of decay 
instability was observed in all cases when we introduce 
in dynamics the wave E4 (stabilization wave) and when 
the condition 12/ 2 (0)L Eμ μ>  was fulfilled. 
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4.2. STABILIZATION OF EXPLOSIVE 
INSTABILITY 

It is interesting to notice that stabilization can be re-
alize and for explosive instability. Really, in Figs. 7-9 
the dynamics of wave amplitudes is presented 
(x0(0) = 0.1, x2(0) = 0.001, x6(0) = 0.01,) at explosive 
instability in absence stabilization wave (see Fig. 7), and 
also dynamics of these amplitudes in the presence of a 
stabilization wave (Figs. 8, 9). It is seen from these fig-
ures that already at values of parameter ε = 0.09 full 
stabilization of explosive шnstability have been ob-
served. Only the basic wave (E12) and the stabilization 
wave (E4) have periodic dynamics. Other waves practi-
cally don’t change. However already at ε = 0.08 the 
explosion appears. However time of its occurrence be-
came significantly large (more 400).  

 
Fig. 7. Explosive instability at 0ε =  

 
Fig. 8. Suppression of explosive at 0.09ε =  

 
Fig. 9. Suppression of explosive at ε = 0.09 

CONCLUSIONS 
Thus considering usual process of nonlinear three 

wave interaction it is necessary to draw attention to pos-
sible additional wave that characteristics may be closed 
to ones of the wave taking parts in the nonlinear interac-
tion. Taking in account of this wave may essentially 
change usual dynamics of wave interaction. It may say 
that in the common case nonlinear wave interaction, for 
example, in beam systems must consider as four wave 
process. 

The obtained above results show also that using 
whirligig principles allows lightly to suppress processes 
of nonlinear instabilities. This simplicity of suppression 
is lightly explained that fact that characteristic times of 
nonlinear instabilities are more larger as rule than char-
acteristic times of linear process. Really, in our case 
character times of arising of nonlinear instabilities are 
inversely proportional to initial amplitudes of decaying 
wave. This value practically in all real cases is more less 
than coefficient of linear connection between waves. In 
this case to suppress instabilities it is lightly to realize 
conditions when time of energy exchange between 
waves conditioned by linear connection is more less 
than time of arising of nonlinear instabilities. As it 
known [5] this is main criterion of stabilization mecha-
nism at using whirligig principle. 
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ДИНАМИКА ВЗРЫВНОЙ НЕУСТОЙЧИВОСТИ 
В.А. Буц, И.К. Ковальчук 

Показано, что, в общем случае, динамика взрывной неустойчивости должна описываться в рамках четы-
рехволнового взаимодействия. В отличие от трехволнового взаимодействия эта динамика может не содер-
жать взрывного нарастания амплитуд взаимодействующих волн. Более того, она может быть нерегулярной. 
Если одна из четырех волн близка по своим характеристикам к одной из взаимодействующих волн и связана 
с ней линейной связью, то взрывная неустойчивость может быть подавлена. 

ДИНАМІКА ВИБУХОВОЇ НЕСТІЙКОСТІ 
В.О. Буц, І.К. Ковальчук 

Показано, що, в загальному випадку, динаміка вибухової нестійкості повинна описуватися в межах чоти-
рьох хвилевої взаємодії. На відміну від трихвильової взаємодії ця динаміка може не містити вибухового зро-
стання амплітуд хвиль, що взаємодіють. Більш того, вона може бути нерегулярною. Якщо одна з хвиль бли-
зька по своїм характеристикам до однієї з тих, що взаємодіють, та зв’язана з нею лінійно, то вибухова не-
стійкість може бути подавлена. 


