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On the basis of solution of the Bragg-Hawthorne equations it is shown that relationship of the helicity of toroidal
swirling vortex with circulations along the small and large linked circles depends on distribution of azimuthal veloc-
ity in the core of vortex ring and differs from the well-known Moffat relationship — the doubled product of circula-

tions multiplied by the number of links.
PACS: 47.10.-g; 47.32.Ef

INTRODUCTION

In nature, the toroidal vortices often have a ‘swirl’
[1] - the orbital motion along the torus directrix. Such
objects are the attached ring vortices of tropical cy-
clones, hurricanes and tornadoes [2], as well as solar
toroidal vortices [3] responsible for the 11-year cycle of
activity, and many others (see, e.g. [4]). In the presence
of swirl there appears the helicity topological integral
[5]. Laboratory experiments have confirmed that this
may increase the vortex stability [6].

It is known that for two linked vortex contours the
helicity should be equal to the product of the circula-
tions multiplied by the doubled number of links [1, 5, 7,
8]. We will present the example with hydrodynamic
solution showing that for the toroidal vortex with swirl
this ratio has a little different form, reflecting spatial
distribution of the vorticity.

1. BRAGG-HAWTHORNE EQUATION AND
ITS SOLUTION FOR TOROIDAL VORTEX

Let us consider the axisymmetric stationary flow of
an ideal incompressible fluid in the absence of body
forces.

We use the Stokes stream function y, defined in cy-
lindrical coordinates (r, ¢, z) in accordance with
V., =—0wy/roz, V,=0w/ror. Here the continuity
equation divV =0 is identically satisfied. Orbital veloc-
ity component can now be written in the form
V,=f(y)/r, where f(y) is the known function. We

obtain from the expression for vorticity that

2
rot V=—Aw/r,where A= ri(la—wjﬁa—";.
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The ¢-th component of the vorticity can be found

from the Euler equation and after simple transfor-
mations:
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rot,V =— , Wwhere f'=df /dy,
I=p/p +V2/2 is the Bernoulli integral. The Bragg-
Hawthorne equation for  are obtained due to equating
these two expressions for the azimuthal component of
the vorticity [1, 9] (or, equivalently, the Grad-Shafranov
equation in MHD case [10]) with given IT and f :
2 2
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Solutions of the equation (1) with f =0 describe

the stationary axisymmetric flows with swirl. One set of
such solutions can be obtained for the case

dIT/dy =Const = ag, , fdf /dy =Const =—SR’¢,

(o and B are dimensionless constants, and ¢, is di-

mensional normalization factor). Then the solution of
equation (1) for the stream function has the form [10] *:

v=¢ B(ﬂR? +r)z +0‘T_l(r2 —RZ)Z}. @)
Using (2) we obtain V, u V, and assign the swirl ve-
locity V, (and pressure p). The expression (2) for the
case close to the circle r=R; z=0 (i.e. with
|r—R]<< R and small z) transforms into the following
expression:

y/:2’1¢0R2[(ﬁ+1)22 +(a—1)(r—R)2] 3)
Surfaces w(r,z)=Const in this solution for
B+1>0 and « >1 are the nested tori with common

rotary axis (directrix) r =R, z=0 and their meridional

sections are ellipses. We also obtain from these equa-
tions

1_[:05¢0l//+ﬂo y f2: f02—2ﬂR2¢Ol//, (4)
where TI, and f, are integration constants parametrizing
the solution.

2. HELICITY

In the following sections we will find the helicity in-
tegral [5] for the solution (3)

$=[V-rotvav .
We restrict ourselves to the case f+1=a -1 when
sections of the flow by meridional plane are circles:
¢g2*1¢0R2(a—1){z2+(r—R)2]. )
Any of the tori y/(r,z) =Const can be considered as

a boundary of the area occupied by the swirling vortex
flow.

! Other examples of the solutions, mainly relate to the inves-
tigation of MHD configurations, can be found in the mono-
graph [11] and in the collections of reviews "Queations of
plasma theory" edited by M.A. Leontovich (Moscow, Atom-
izdat, 1963-1982).
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We assume that meridional cross-section is the circle
with radius a, and the flow outside the torus is potential.
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Fig. 1. 3D-scheme of toroidal vortex with swirl

Taking into account the definitions, we obtain ex-
pressions for the velocity components. In the case of a
thin ring vortex this movement in the meridional plane
has the nature of ‘solid-body rotation” because the linear
velocity of rotation is proportional to the distance to the
circular directrix of the vortex ring:

V.~ —R¢y(a—1)z, V, ~Rep,(a—1)(r—R).

Here the azimuthal component of the vorticity in the

thin ring is practically constant: w_ ~ —2R¢,(a—1).

3. THE CASE OF HOMOGENEOQOUS SWIRL
OF VORTEX RING

Firstly, we will consider the case =0, a=2 for

which f(y)= f,=Const. This means that the swirl
inside the torus s distributed homogeneously:
V,=f,/r~1f,/R. Two other velocity components
and azimuthal component of the rotor can be written as

~—R¢z, V, 2R (r—R), w, ~—2R¢p,. It is
convenient to pass to the polar coordinate system in the
meridional ~ plane  with  origin r=R, z=0:
R—r=pncosd, z=nsind (n is the coordinate from
rotary axis of the torus along the radius of its cross-
section). The vortex sheet w,=-V, o(y-a) at the
boundary n =a because the azimuthal velocity is dis-
continuous here (&(x) is Dirac function). So, we as-

sume that it is zero outside the torus. Since we take into
account the swirl inside the torus — orbital motion (with
angle ¢) and vortex motion in meridional section along
the small contour (with angle #), it is convenient to rep-
resent the helicity as a sum of two components

S=S5,+S,;
S, = [V,0,4v ,
S, = [ V.0, +V,@,)dV . (6)
Thus, resulting components of the helicity S, S,
have the following form:
S, = [V,w,0v ~—4r"Ra’ 6,

S, = [Viw,dv =~ [V, V,ds. "
z

In the last expression we integrate by the surface of
the vortex ring X . Since on this surface V, ~ Ra¢, and
V, =~ f,/R then S, ~—4r’Ra’f¢,. Hence, S, =5,
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. (We will

see below that the expression S =2S_ is very general).
So, the helicity integral for considered case is

S =-87%Ra’f,g, . (8)

Express the obtained helicity (7) in therms of veloci-

ty circulation ' on the small contour surrounding the
vortex ring once, and T, on the large contour coincid-

ing with circular directrix of the torus:

and, accordingly, for this solution S =2S,

27
r=af[V,d0~2raRg, ,
0

2m
[, =R |V dp=2rf,.
J

So, the expression for helicity in this case has usual
form:

S = —2IT,. 9)

4. THE NON-HOMOGENEOQOUS SWIRL
(WITH MAXIMUM SPEED
ON THE ROTARY AXIS)

In this section we consider the case of non-
homogeneous swirl. Initially, we restrict ourselves by
the investigation of the special case where the maximum
azimuthal velocity is attained on circular directrix of the
vortex ring: S=a—-2>0, and on the surface of the

ring the swirl disappears. The expression for the stream
function on the boundary of the torus is found from (5)

Y~ 27 (a—1)g,R%’
where a is the small radius of the toroidal vortex (the
radius of the meridional section). Assuming that on this
boundary V, =0, ie. f|,=0, we find the integration

constant f, in the

f,=J(@-D)(a-2)4Ra.

a’> (2 +(r-R)’) and the azimuthal velocity is

=J(@-1)(a-2) 4,R*\[a’ —(2* +(r—R)*)/r. The az-
imuthal component of the vorticity is expressed in the
form W, =—¢y(a—DR*(r+R)/r* ~—2¢,R(a—1).
Thus, for the thin vortex we obtain
Vow, ~ 20 (a—1)"*(a—2)R*Ja? — (22 +(r —R)?) .
Finally we obtain the ¢-th component of helicity in-
tegrating the expression (6) by the torus volume:

S, = —(8/3)7%a°R°#; (& D/ (o —D)(a - 2).
To derive the expression S, we find the correspond-

ing velocity and vorticity components and integrate by
the volume of the ring vortex:

expression (4):

Inside the vortex ring

av .

ng_(a_l)g/z(a_z)llz% R I\/a (Z +(I’ R)z)

As in previous section we can see that S, =S and
S=2§,. The circulation on the small contour (circle
with radius a) in this case is

27
I'=a[V,d0 ~—ra’w, = 2ra*Rey(a—1).
0
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The circulation on the large contour (circular direct-
rix of the torus) is

I, = Rwadw =27R%*ag\/(a -1 (a-2) .

Finally we obtain the helicity for the case of non-
homogeneous swirl with its maximum speed on the ro-
tary axis and zero on the boundary expressing it through
the circulations:

S=-41T, /3. (10)

We can see that in the case of non-homogeneous
swirl, module of the coefficient k for the product of
circulations in the expression for the helicity
S =—kI'T, may be different from two.

5. HELICITY OF A RING VORTEX.
GENERAL CASE

Let us go back to the general representation of helic-
ity as the sum of longitudinal and transversal compo-
nents, correspondently: S=S, +S,. In the case of axial

symmetry of the flow we represent the vorticity compo-
nent in the following form: w,=rotV, = [V,le ,
o, =rot,V,. Consider the difference

$,-S, = [(V,-®,-V,-®,)dV

=[(Vo [V, V, |-V, [V. V,])av
and apply the identity

div[a,b]=V:[a,b]=b-[V,a]-a:[V,b]
to the vectors V, and V, . Then we obtain
S,=8,=[V-[V,,V, Jav =[[V,,V, ]-nds =0
P

for the case if azimuthal velocity component is equal

to zero on the boundary of the integration range 2.

Thus, in the general case of axisymmetric flow in cir-
cular vortex

S,=S,; §=2S,. (11)

At the same time the expression of helicity through

circulations S =—kI'T, for toroidal vortex is not uni-

versal: coefficient k for product of circulations may be

different from two. Indeed, let us consider a thin vortex
ring with swirl of some general form

rv, = f(y)=const. In the considered solution of (5)
w=yw(n) and f =g(n), where

9(n) = £, — (@ —D(a—2)¢,"R'n’ .
Then, taking into account expressions for the helici-

ty, we get S=2$¢=—16n2(a—1)R¢ojn-g(n)dn. If
0

the swirl is homogeneous (a =2), theng(n) = f, and

k = 2. In the case of non-homogeneous swirl we have
4 a

k= . dn. 12

foazgn 9(7)dn (12)

The difference of k from the value k =2 is caused

by the fact that in the case of swirling vortex the linked

contours belong to the same toroidal vortex and are not

independent. There is still a topological integral of he-

licity, which can be expressed through the product of
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circulations of two linked contours. But here coefficient
k is a functional of distribution of swirl over the cross-
section of the torus, and also depends on the choice of
contours by which the velocity circulation is calculated.

6. DISCUSSION

We explain the above results on the example of non-
homogeneous swirl with maximum velocity on the torus
circular axis (4). The value of helicity integral for the
swirling vortex ring with specified circulation velocity
on the small (T') and large (T',)contours depends on

distribution of the swirl along small radius of the torus.
At the same time, swirl distribution is unambiguously
associated with distribution of the vorticity meridional
component.

G o
Fig. 2. Two linked vortex threads. Small circular
arrows show the direction of circular motion near each
of the threads. (In the remaining pictures the meaning
of circular arrows is the same.) (a). The upper picture:
circles in the meridional plane represent the family of
vortex threads (vortex shroud) obtained as a result of
‘smearing’ of vertical vortex thread over the torus sur-
face. The lower picture: circles in horizontal planes
represent the family of vortex threads obtained
as a result of ‘smearing’ of horizontal vortex thread
over the torus volume (b). Vortex ring with homogene-
ous swirl: the circular arrows show the direction of
movement in the meridional and horizontal sections
(in the latter case, the arrows have the same length,
since the swirl is homogeneous) (c)

If to replace the continuous vorticity distribution
with discrete one, separating the azimuthal component
from the poloidal (meridian) component, without chang-
ing the helicity value, we will get two families of linked
vortex threads.

Integral of the helicity for the system of two linked
vortex threads is determined by the product of circula-

tions along a contour enclosing these threads:
S =+2TT,.
a b

208 — .

Fig. 3. Two families of linked vortex threads with in-
complete links of vertical and horizontal threads (a).
The ring vortex with inhomogeneous swirl. The circular
arrows show the direction of movement in meridional
and horizontal sections (in the latter case, the arrows
are of different lengths, since the swirl is non-
homogeneous) (b)
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As to continuous distribution, let us ‘smear” one of
the vortex threads over the surface of circular torus,
preserving the meridionality of vorticity @, =0,@, #0

(see Fig. 2,b, upper picture), and the other thread — over
the inside of the same torus (see Fig. 2,b, lower picture),
so that the vorticity was oriented along the azimuth
w, #0,0,=0 (preserving the value of circulations

I,T,). At that the value of helicity integral will not

change.

If to ‘smear’ the thread with meridional vorticity
over the torus volume (not the surface), the result will
be different: not all pairs of partial threads, belonging to
different families, will be linked. This is the reason why
the coefficient k may be less than 2.

CONCLUSIONS

For a vortex with swirl (orbital motion) the helicity
is nonzero, but relation to the product of the linked con-
tours circulations differs from the known formula

S=4+2IT, -1, where factor | is the Gaussian integral

of links with integer values [8, 12, 13]. In our case, for
thin vortex rings with circular cross-section the coeffi-
cient k may vary in the limits 4/3<k <0, if the val-
ues I and I', of velocity circulation are determined on

the above-mentioned circuits (small and large genera-
trixes of the torus). Graphic explanation of this differ-
ence is presented in Figs. 2 and 3. The case when k =2
corresponds to homogeneous swirl, and the cases when
4/3<k<2 and 2<k<o correspond to non-
homogeneous swirl with maximum and minimum of
azimuthal velocity on circular directrix of the torus. The
minimum possible value k =4/3 corresponds to the
considered parabolic case of azimuthal velocity distri-
bution in the absence of swirl on the vortex boundary.
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CIIUPAJIBHOCTH TOPOUJAJIBHOI'O BUXPS C HEOJJHOPO/JHOM 3AKPYTKOMN

E.IO. Bannuxosa, B.M. Konmopoeuu, C.A. Ilocnasckuii

Ha ocHoBe pewenust ypasHeHuil bparra-XoTopHa 1noka3zaHo, 4TO CBSI3b CIIHPAJILHOCTH TOHKOI'O TOPOUJAIIBHOTO
BUXPS TP HAJMYUH 3aKPYTKH C MUPKYISAIISIMA BIOJIb MaJIOH W OOJBIION 3aleTNIEHHBIX OKPYKHOCTEH 3aBHCHUT OT
pacripenielieHusl a3UMYTaIbHON CKOPOCTH B SiAPE KOJNBLEBOTO BUXPS W OTJIMYACTCS OT M3BECTHOTO COOTHOIICHUS
Moddara — yIBOSHHOTO IPOU3BEICHIUS TaKUX MUPKYIANNH, YMHOKEHHOTO Ha YUCIIO 3alleTUICHHH.

CHIPAJIBHICTb TOPOIJTAJIBHOI'O BUXOPY 3 HEOJHOPITHOIO 3AKPYTKOIO
O.10. bannixoea, B.M. Konmopoeuu, C.0. Ilocnascvkuii

Ha ocHoBi po3B’s13Ky piBHAHB bperra-XoTopHa 1nokasaHo, 1110 3B'SI30K CHIpaJIbHOCTI TOHKOTO TOPOiNaIbHOTO BHU-
XOpY IPH HASBHOCTI 3aKPYTKH 3 LUPKYJISILISIMH B30BXK MaJIOTO Ta BEJIMKOI0 3a4EIUIEHUXK KiJI 3aJIeXKUTh Bl PO3IO-
JTy a3MMyTaJIbHOT LIBHAKOCTI B SJpi KUJIbIIEBOTO BUXOPY 1 BIPI3HAETHCS BiA BijioMoro criBBigHOmEHHS Modda-
Ta — MOJJBOEHOTO JOOYTKY TAKUX LUPKYJISLIN, TOMHOXEHOTO Ha KUIBKICTh 3a4€IUICHb.
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