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ION CYCLOTRON TURBULENCE IN PLASMA OF LOWER HYBRID 
CAVITIES IN THE EARTH’S IONOSPHERE 

D.V. Chibisov 
V.N. Karazin Kharkiv National University, Department of Physics, Kharkov, Ukraine 

E-mail: dmtchibisov@gmail.com 
The linear and nonlinear stages of the ion cyclotron instability in plasma of lower hybrid cavities in the Earth's 

ionosphere are investigated. Because these structures are cylindrically symmetric, the analysis uses the model, 
which considers as elementary perturbations the small-scale cylindrical waves. It is shown that at the nonlinear stage 
of instability the suppression of high cyclotron harmonics, as well as short-wavelength part of the spectrum of the 
azimuthal wave numbers occurs. The estimate of the rate of ion heating is carried out. 
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INTRODUCTION 
Lower hybrid cavities (LHC) are the common phe-

nomenon in plasma of the topside ionosphere and mag-
netosphere of the Earth, which were observed in the 
auroral zone using sounding rockets at altitudes up to 
1000 km [1 - 3], as well as satellites from 1000 to 
35000 km [4 - 6]. LHC are the spatially localized cylin-
drically symmetric structures in plasma, whose axis 
coincides with the direction of the geomagnetic field 
lines. They are characterized by significantly increased 
level of electrostatic lower hybrid oscillations, as well 
as depletion of the plasma density in comparison with 
the environment. LHC have dimensions across the mag-
netic field from a few meters to several hundred meters 
(a few ion Larmor radius) and the dimensions along the 
magnetic field, considerably exceeding their transverse 
ones. Apart from the increased level of the lower hybrid 
oscillations in LHC where also detected the broadband 
fluctuations in the low frequency range, including the 
ion cyclotron frequency rang, and which in the back-
ground plasma are absent. Here we consider the prob-
lem of the occurrence of these oscillations in LHC. We 
assume that the cause of the ion cyclotron oscillations in 
the LHC is the inhomogeneity of plasma density in the 
cavity across the magnetic field and arising as a result of 
this the drift-cyclotron instability of plasma. Because 
these structures are cylindrically symmetric, the analysis 
of both linear and non-linear stages of instability is 
based on the theory using as elementary perturbations 
the small-scale cylindrical waves. This theory was de-
veloped earlier in papers [7 - 9] for cylindrically sym-
metric laboratory plasma. We also estimated the rate of 
heating of the plasma ions in LHC due to ion cyclotron 
turbulence. 

1. LINEAR THEORY  
In homogeneous magnetized plasma we consider a 

cylindrically symmetric cavity whose axis coincides 
with the direction of the magnetic field. Assume, that 
the plasma density in the cavity determined by the "in-
verted" Gaussian distribution 
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where 0n  is the plasma density outside of the cavity; a  
is a constant determines the depth of the cavity; 0r  is 
the characteristic length of plasma density inhomogenei-

ty. This dependence of plasma density in the cavity is 
confirmed by satellite measurements [10]. It was found 
that a = 0.1…0.4 at altitudes of 600…1000 km, 
a = 0.1…0.2, at altitudes of 1500…13000 km, and 
a = 0.02…0.05 at altitudes of 20000…35000 km. Dis-
tribution of the components of the plasma velocity as-
sumed Maxwellian, which is also confirmed by observa-
tions. The equilibrium distribution function for the 
components of plasma in this case has the form 
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where the superscript α  denotes ions (i) or electrons 
(e); Rα , αρ  and vz , are the radial coordinate of the 
guiding center; Larmor radius and velocity along the 
magnetic field of the particles correspondingly; 0R α  is 
the characteristic size of the inhomogeneity of the radial 
distribution of the guiding centers of particles; 

vT T cα α αρ ω=  is the thermal Larmor radius; vTα  is the 
thermal velocity; cαω  is the cyclotron frequency. Plas-
ma is assumed to slightly inhomogeneous, with 

0 TR α αρ  which also gives 000 rRR ei ≈≈ . Observa-
tions have shown that the temperature of ions and elec-
trons in the cavities exceeds the background plasma 
temperature due to lower hybrid oscillations; it means 
that the temperatures of the components within the 
plasma cavity are inhomogeneous and decrease with 
increasing of radius. Therefore, supposing dependence 

0( )T Rα αρ  an arbitrary, we can assume that inequality 
0Tαρ∇ <  is met.  

For the analysis of ion cyclotron instability in the 
cavity, we use the dispersion relation describing the 
linear stage of the small-scale ion cyclotron plasma in-
stability in cylindrically symmetric plasma with arbi-
trary dependence on the radius of the density and tem-
perature of the plasma components which was obtained 
in Ref. [9]:  
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where ( ) ααα ωω Tzcn knz v2−= , ⊥= kmrs , m  is 
the azimuthal wave number, k⊥  and zk  are the wave 
numbers across and along the magnetic field, Dαλ  is the 
Debye length, ( )xI n  is the modified Bessel function, 
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Equation (3) determines in the small-scale asymptot-
ic limit 10 >⊥ mRk α  the dispersion properties of the 
spatially inhomogeneous waves structures – cylindrical 
waves which analytically expressed by Bessel functions 

( )mJ k r⊥ . The dependence of the plasma density (1) as 
well as temperature on the radial coordinate r  in equa-
tion (3) is transformed in the depending on the value 

⊥= kmrs  that corresponds to the radial coordinate of 
the first maximum of the Bessel function for which eq. 
(3) is written, i.e. the coordinate of the point where the 
oscillating and non-oscillating parts of this function are 
separated. Assume that the waves propagate almost 
across the magnetic field, so that 1inz >  and Landau 
damping by ions can be neglected, however for elec-
trons 0 1ez < . Using the corresponding asymptotic 
forms for the )(zW  function, and assuming that the 
wave numbers k⊥  satisfy the condition 1Tik ρ⊥ > , we 
write the equation (3) for one of the cyclotron harmonic 

( )ci mn kω ω δω= + : 
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is the drift frequency, )(ln)(ln rndrTd αααη =  with 
0αη < . In the dispersion relation (5) as in eq. (3) tem-

perature and density of plasma components are deter-
mined at the radius ⊥= kmrs  corresponding to the 
first maximum of the cylindrical wave ( )mJ k r⊥ . 

The dispersion ( )m kδω  and growth rate obtained 
from eq. (5) are 
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The instability occurs due to inverse Landau damp-
ing by electrons because of their thermal motion along 

the magnetic field. We now determine from (6), (7) the 
range of azimuthal wave numbers for unstable oscilla-
tions. Because in the cavity 0 ( ) 0n r∇ > , then the drift 
frequencies satisfy the inequalities * 0eω <  and 

* 0iω > . In this case, the growth rate is positive and 
instability occurs when the azimuthal wave number sat-
isfies the inequality 
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Obviously, for weakly inhomogeneous plasma the 
inequality  
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holds and the applicability of small-scale approximation 
is provided. In addition, we verify the validity for the 
assumption 1Tik ρ⊥ > : 
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The last inequality for the parameters of LHC holds. 
Note that the scale of oscillations depends not only on 
the ratio Tir ρ/0  but on the depth of the cavity a . 
Wavelengths are smaller, the smaller the depth of the 
cavity. 

2. NONLINEAR THEORY  
Nonlinear evolution of ion cyclotron instability at 

the first stage is determined by the induced scattering of 
cylindrical waves by ions. The equation for the spectral 
intensity )(kIm  of cylindrical waves describes this pro-
cess for the ion cyclotron instability has the form [9]: 
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where ( )kmΓ  is the nonlinear decrement: 
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Here ε  is given by eq. (5), ( )11,, mkmkB ⊥⊥  is the 
coefficient of nonlinear interaction of cylindrical waves 
[7, 8]: 
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where 10 1 ,m mk k⊥ ⊥=  22
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iUIm  is the matrix element of induced scattering of 
waves by ions equals  
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Value sr2  is equal to the radial coordinate of the first 
maximum of the cylindrical beat wave for the waves 

( )mJ k r⊥  and 
1 1( )mJ k r⊥ . The beat wave has the wave 

numbers determined by 
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Induced scattering of cylindrical waves has charac-
teristic distinction from a similar process of plane 
waves. In the case of plane waves to obtain the equation 
describing the nonlinear evolution of the spectral inten-
sity ( )I 1k  of the wave-interaction partners, it is suffi-
cient to replace 
 ( ) ( )1 1, ω ω1k k k k   (16) 
and take into account the basic properties of the sym-
metry of the matrix elements. In this case the appear-
ance of non-linear increment in the equation for the 
spectral intensity ( )I k  is accompanied by the appear-
ance of symmetric nonlinear decrement in the equation 
for ( )I 1k  and vice versa. In the case of cylindrical 

short-waves in the derivation of equation for ( )11mI k  in 
addition to replacements (16) should also take into ac-
count the relation (13) as well as inequality 1cos 0

2 <α  
or ss rr <1 . Their accounting leads to an asymmetric 
response influence of wave ( )mJ k r⊥  to wave 

1 1( )mJ k r⊥ , which reduce the nonlinear decrement in the 

equation for ( )
1 1mI k in 1>>m  times. Thus, the pro-

cess of induced scattering of short cylindrical waves is 
asymmetric. This asymmetry of the nonlinear interac-
tion of cylindrical waves leads to the appearance of for-
bidden and permitted intervals of azimuthal wave num-
bers 1m  affecting on the wave with azimuthal wave 
number m , that significantly affects on the evolution of 
instability.  

Now we consider the effect of induced scattering of 
cylindrical waves on the ion cyclotron instability with 
the parameters of LHC, when conditions 00 >∇n , 

0<eη , 0<iη  are met. Proportionality of the matrix 
element (14) to δ -function determines the transverse 
wave numbers of the interacting cylindrical waves: 

⊥⊥ ≈ 11 // knkn . In its turn the requirement ss rr <1  de-
termines the limit on the azimuthal wave numbers 1m : 

nmnm // 11 < . Taking into account the inequality (8) 
we obtain permitted interval for these wave numbers:  
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For azimuthal wave numbers determined by (9) and 
(17) the first term in the square brackets of eq. (14) is 
greater than the second one in ie TT  times and at the 
first phase of the nonlinear evolution of the oscillation 
spectrum the main process is the interaction of different 
cyclotron harmonics with cici nn ωω 1≠ . As a result at 
the energy density fluctuations 

4
0 ))(/( −

⊥≈ Tieii kTTTnW ρ  the high-frequency part of 
the spectrum of the drift-cyclotron instability is sup-
pressed; so that only main cyclotron harmonic with 

1=n  remains (see also [11]).  
At the second phase of the nonlinear evolution of 

spectrum, when the first term in the square brackets 
vanishes, a nonlinear interaction of waves with different 
values of the azimuthal wave numbers becomes the 
main. Taking into account inequality 01 << mm  we 

obtain for nonlinear decrement ( ) ( )∑
<

<−∝Γ
mm

m mmk
1
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This leads to damping of shorter wave ( )mJ k r⊥  com-
pared with 

1 1( )mJ k r⊥  wave, and ultimately to the sup-
pression of the short-wavelength part of the azimuthal 
wave numbers spectrum. As a result the narrow part of 
the spectrum near the boundary value 01mm −=  (9) 
remains. Simultaneously the evolution of the spectrum 
of the transverse wave numbers ⊥k  does not occur so 
that the frequency spectrum near the fundamental har-
monic of the ion cyclotron frequency, which is deter-
mined by the dispersion (6), does not change. 

The second stage of the evolution of the drift-
cyclotron instability is determined by the scattering of 
particles in the random fluctuations of the electric field 
drift-cyclotron turbulence (broadening of the resonance) 
[12, 13]. At this phase the saturation of growing fluctua-
tions at the level [8]: 
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The ion cyclotron turbulence in the LHC leads to 
additional turbulent heating of the plasma ions. To de-
termine the rate of heating we use the results of [14], 
where was estimated the rate of quasi-linear change of 
the thermal Larmor radius, resulting from collisions 
with turbulent fluctuations of the electrostatic fields:  
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Characteristic time of variation of the thermal Lar-
mor radius due to ion cyclotron turbulence is of the or-
der of 
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The rate of heating of the ions due to ion cyclotron 
turbulence is much less than the ion cyclotron frequen-
cy, and therefore the contribution of the ion cyclotron 
heating compared with the lower-hybrid heating is in-
significant. 
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CONCLUSIONS 

In plasma of the lower hybrid cavities which exist in 
the Earth's topside ionosphere and magnetosphere, the 
ion cyclotron instability may occurs due to the radial 
inhomogeneity of plasma. For weakly inhomogeneous 
plasma in cavities as well as for cavities with small 
depth, the cylindrical waves are short across the mag-
netic field; the azimuthal and transverse wave numbers 
are given by the expressions (9) and (10).  

At the nonlinear stage of development of instability 
the higher cyclotron harmonics in the frequency spec-
trum as well as the short-wavelength part of the spec-
trum of the azimuthal wave numbers are suppressed due 
to induced scattering of waves by ions. As a result only 
first harmonic of the ion cyclotron oscillations and a 
narrow part of the spectrum near the long-wavelength 
stability boundary (9) remain in the spectrum. The in-
stability saturates at energy density fluctuations (18) due 
to the effect of scattering of ions by the random fluctua-
tions of the electric fields of drift-cyclotron turbulence. 
The development of the instability is accompanied by 
turbulent heating of the ions; however, the contribution 
of this effect compared with the lower hybrid heating is 
insignificant. 
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ИОННАЯ ЦИКЛОТРОННАЯ ТУРБУЛЕНТНОСТЬ ПЛАЗМЫ НИЖНЕГИБРИДНЫХ ПОЛОСТЕЙ 
ЗЕМНОЙ ИОНОСФЕРЫ 

Д.В. Чибисов 
Исследуются линейная и нелинейная стадии ионной циклотронной неустойчивости в плазме нижнеги-

бридных полостей земной ионосферы. Поскольку такие структуры имеют цилиндрическую симметрию, 
анализ проводится на основе модели, рассматривающей в качестве элементарных возмущений мелкомас-
штабные цилиндрические волны. Показано, что на нелинейной стадии неустойчивости происходят подавле-
ния высоких циклотронных гармоник, а также коротковолновой части спектра азимутальных волновых чи-
сел. Выполнена оценка скорости нагрева ионов. 

ІОННА ЦИКЛОТРОННА ТУРБУЛЕНТНІСТЬ ПЛАЗМИ НИЖНЬОГІБРИДНИХ ПОРОЖНИН 
ЗЕМНОЇ ІОНОСФЕРИ 

Д.В. Чібісов 
Досліджуються лінійна та нелінійна стадії іонної циклотронної нестійкості в плазмі нижньогібридних 

порожнин земної іоносфери. Оскільки такі структури мають циліндричну симетрію, аналіз проводиться на 
основі моделі, що розглядає в якості елементарних збурень дрібномасштабні циліндричні хвилі. Показано, 
що на нелінійній стадії нестійкості відбуваються пригнічення високих циклотронних гармонік, а також ко-
роткохвильової частини спектра азимутальних хвильових чисел. Виконано оцінку швидкості нагріву іонів. 
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