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Relativistic mono-energetic drift kinetic equation for hot toroidal plasmas is analyzed. For compatibility with 

non-relativistic description, non-canonical thermodynamic forces with the additional temperature-dependent term in 
the first thermodynamic force were introduced. The transport coefficients were defined as a convolution of mono-
energetic transport coefficients with Maxwell-Jüttner distribution function and corresponding weight function. 
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INTRODUCTION  

Non-relativistic neoclassical theory for toroidal de-
vices is commonly considered to be a matured field of 
research given the extensive body of scientific literature 
dealing with the topic [1, 2]. One of the most convenient 
computational methods developed inside the theory for 
determining neoclassical contributions to the transport 
of plasma observables such as density, temperature and 
current is the mono-energetic approach, which leads to 
the so-called mono-energetic transport coefficients (see, 
for example, [3] and the references therein).  

In contrast to the widespread opinion [1, 2] that rela-
tivistic effects in fusion plasmas can be important only 
for high-energetic groups of electrons with energies 
close to me0c2 or exceeding it (say, runaway electrons), 
relativistic effects was found to produce the non-
negligible contribution in collisional transport properties 
of plasmas for the temperatures about few tens keV due 
to the features of relativistic thermodynamic equilibrium 
of electrons [4 - 7]. In order to take these effects into 
account, one needs to reformulate the mono-energetic 
drift kinetic equation and the definition of transport co-
efficients. 

In this paper, we derive the neoclassical mono-
energetic transport coefficients for relativistic electrons 
in hot plasmas. Rigorous relativistic description gener-
ally requires a covariant formulation [8]. However, 
while Lorentz invariance is not important for neoclassi-
cal transport because the latter is limited to relatively 
small characteristic velocities, non-covariant formula-
tion is better suited for the task since our goal is to keep 
the form of equations as close as possible to the formu-
lation generally accepted in non-relativistic neoclassical 
theory. This approach allows us to calculate the relativ-
istic mono-energetic transport coefficients using already 
existed mono-energetic non-relativistic transport codes 
like DKES [9]. Apart from this, it may be considered as 
the tool for estimation of the applicability range of non-
relativistic neoclassical approach.  

In section 2, relativistic mono-energetic drift kinetic 
equation is formulated and a set of non-canonical ther-
modynamic forces is introduced. It is shown that for 
compatibility with non-relativistic description it is nec-
essary to include the explicit temperature dependence in 
the first thermodynamic force. In section 3, the transport 
coefficients are derived as a convolution of mono-
energetic coefficients with the relativistic Maxwell-
Jüttner distribution function and corresponding relativis-
tic weight function. 

1. MONO-ENERGETIC LINEAR DRIFT 
KINETIC EQUATION FOR RELATIVISTIC 

ELECTRONS  

Similar to the non-relativistic consideration [1 - 3], 
in order to obtain the neoclassical mono-energetic trans-
port coefficients for relativistic electrons in hot plasmas 
(the ions are taken as non-relativistic) on the given 
magnetic surface with label ρ, we start from the lin-
earized relativistic drift kinetic equation (rDKE) for 
deviation from the equilibrium, fe1 = fe – fe0, induced by 
gradients of thermodynamic quantities. Using the vari-
ables (u,ξ), where u = vγ is the momentum per unit mass 
with γ = (1+u2/c2)1/2, ξ = (u·B)/(uB) is the pitch and B is 
the vector of the magnetic field, the mono-energetic 
rDKE can be written as 
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where V = Vdr·∇s + ξ& ∂/∂ξ is the mono-energetic Vlasov 
operator, 
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h = B/B is the magnetic field unit vector, ∇s is a gradi-
ent within the magnetic surface, E = Eφ + Eρ∇ρ is the 
electric field separated to the toroidal (inductive) field 
Eφ and the radial field, Eρ = -∂Φ/∂ρ with Φ as plasma 
potential; L = (1/2)∂/∂ξ((1-ξ2)∂/∂ξ) is the Lorentz opera-
tor which describes the pitch-angle scattering of elec-
trons and νD(u) is the relativistic electron deflection 
frequency [10]. The radial component of the relativistic 
drift velocity can be represented as  

2 2
0

3

(1 )
( ) .

2
+ ξ

ρ ≡ ⋅∇ρ = ×∇ ⋅∇ρ
γ

& V Be
dr

m cu
B

e B
      (3) 

In order to exclude the local dependencies which do 
not contribute to transport, the local equilibrium fe0 can 
be represented as follows [9]: 
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where the angle brackets 〈...〉 denote the flux-surface 
average and the relativistic thermodynamic equilibrium 
feMJ is given by Maxwell-Jüttner distribution function, 
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with Boltzmann factor, /
0

ee T
e en n e Φ= , included. Here, 

uth = pth/me0 is the thermal momentum per unit mass 
with pth = (2me0Te)1/2, μr = me0c2/Te and 
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with Kn the modified Bessel function of n-th order. 
Then, the right-hand-side of Eq. (1) can be written as  
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where κ = μr(γ - 1) is the relativistic kinetic energy, 
normalized by temperature, and 
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is the relativistic correction term which appears due to 
the specific feature of Maxwell-Jüttner distribution 
function [4 - 7]. 

Now, let us introduce the relativistic thermodynamic 
forces as follows: 
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They are similar to the non-relativistic “canonical” 
thermodynamic forces, but there is one very important 
difference: in contrast to the “canonical” definition, 
where only the dependencies from the local gradients 
are present, A1 contains an additional relativistic factor 
R and thus represents an explicit function of the electron 
temperature Te. 

Finally, we obtain the mono-energetic rDKE, which 
can be solved by the DKES code [9]: 
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Due to the lack of derivatives of fe1 with respect to u 
and ρ in Eq. (10), their values can be treated as parame-
ters that leads to a considerable simplification of the 
drift kinetic equation from five phase-space variables to 
three (two angles at the magnetic surface and pitch). 
Similar to the non-relativistic formulation [3], solution 
of Eq. (10) is defined only by parameters γEρ/u and 
γνD(u)/u, which are, actually, nothing else as Eρ/v and 
νD/v, respectively. This approach is sufficient to cover 
the main features of the neoclassical radial transport 
when applied for calculations of the transport coeffi-
cients and fluxes. 

2. RELATIVISTIC MONO-ENERGETIC 
TRANSPORT COEFFICIENTS 

Similar to [3], let us look for the solution of Eq. (10) 
as 
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where R0 is the reference value of the torus major ra-
dius, ud = me0c2/(2eγR0B0) is characteristic of the radial 
drift velocity and B0 is the reference value of magnetic 
field strength. Then the original drift kinetic equation 
splits into a system of two independent dimensionless 
differential equations: 
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with b = B/B0. Here, first equation describes the radial 
transport due to radial gradients, contained in A1 and A2, 
and second equation describes the parallel transport due 
to a parallel electric field, contained in A3 (the factor γ in 
the Eq. (12) for êf  is kept with the only purpose to 
keep the form of equations as similar as possible to the 
corresponding non-relativistic equations). 

Within neoclassical formalism, the relationships be-
tween the flux-surface-averaged fluxes, Ii, and the ther-
modynamic forces which drive them, Ai, can then be 
expressed as 
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where Lij is the matrix of transport coefficients. 
As was shown in [5], the relativistic flux-surface-

averaged flow I1, which is related to the radial compo-
nent of the particle flux density, Γe , can be written in 
the same form as the non-relativistic one,  
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Next, I2, which is the radial component of the energy 
flux density, Qe , is equal 
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And the last, I3, is the parallel component of the 
electron current density, Je , is equal 
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Expressing the fluxes Ii through the thermodynamic 
forces, the mono-energetic solutions of Eq. (12) may be 
used to determine the transport coefficients by energy 
convolution with the local Maxwell-Jüttner distribution 
function, 
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where h1 = h3 = 1, h2 = κ and Dij(κ) are the mono-
energetic transport coefficients, defined below. If one 
compares the expression for relativistic energy convolu-
tion given by Eq. (17) to the corresponding non-
relativistic formula [3], one may find that an additional 
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relativistic factor ( 1) / 2γ γ +  appears under integral, 
along with expected normalization coefficient CMJ(μr), 
which arise from Maxwell-Jüttner distribution function 
and the use of relativistic kinetic energy, κ = μr(γ - 1), 
instead of non-relativistic one, K = me0v 2/2Te. 

Finally, the relativistic mono-energetic transport co-
efficients Dij for electrons are defined here as follows: 
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Of these mono-energetic coefficients, D11 is related 
for description of the radial transport, D33 of the parallel 
transport, D13 is characteristic of the Ware pinch and 
D31 of the bootstrap current. Only three of these coeffi-
cients are independent, however, as D13 = −D31 due to 
Onsager symmetry. 

CONCLUSIONS 
Following the standard approach to neoclassical the-

ory, the relativistic mono-energetic drift-kinetic equa-
tion for hot electrons is considered. Due to a specific 
features of the Maxwell-Jüttner distribution function, 
the relativistic correction term appears in the first ther-
modynamic force. By splitting the mono-energetic 
rDKE in two independent equations which correspond 
to the different thermodynamic forces, the set of trans-
port coefficients is obtained. Using this scheme, relativ-
istic transport coefficients can be found by re-
interpretation of the solution from the non-relativistic 
transport codes. The solution of rDKE for given values 
of γEρ/u and γνD(u)/u and velocity γ/u = v, should be 
interpreted as the same non-relativistic function of 
pitch-angle with different velocity v and parameters 
Eρ/v and νD(u)/v, such that these parameters should co-

incide numerically. Then the transport coefficients can 
be calculated through the convolution of mono-
energetic transport coefficients with Maxwell-Jüttner 
distribution function and specific relativistic weight 
factor. 
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РЕЛЯТИВИСТСКИЕ МОНОЭНЕРГЕТИЧЕСКИЕ КОЭФФИЦИЕНТЫ ПЕРЕНОСА  
В ГОРЯЧЕЙ ПЛАЗМЕ 

И.Н. Марущенко, Н.А. Азаренков 
Проанализировано релятивистское моноэнергетическое дрейфовое кинетическое уравнение для горячей 

тороидальной плазмы. Для совместимости с нерелятивистским формализмом были введены неканонические 
термодинамические силы, содержащие дополнительный температурно-зависимый член в первой термоди-
намической силе. Коэффициенты переноса получены в виде свёртки моноэнергетических коэффициентов 
переноса с функцией распределения Максвелла-Юттнера, описывающей термодинамическое равновесие в 
релятивистском газе, и соответствующей весовой функцией. 

РЕЛЯТИВІСТСЬКІ МОНОЕНЕРГЕТИЧНІ КОЕФІЦІЄНТИ ПЕРЕНОСУ В ГАРЯЧІЙ ПЛАЗМІ  
І.М. Марущенко, М.О. Азарєнков 

Проаналізовано релятивістське моноенергетичне дрейфове кінетичне рівняння для гарячої тороїдальної 
плазми. Для сумісності з нерелятивістським формалізмом були введені неканонічні термодинамічні сили, 
що містять додатковий температурно-залежний член у першій термодинамічній силі. Коефіцієнти переносу 
отримані у вигляді згортка моноенергетичних коефіцієнтів переносу з функцією розподілу Максвелла-
Юттнера, що описує термодинамічну рівновагу в релятивістському газі, та з відповідною ваговою функцією. 


