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Relativistic mono-energetic drift kinetic equation for hot toroidal plasmas is analyzed. For compatibility with
non-relativistic description, non-canonical thermodynamic forces with the additional temperature-dependent term in
the first thermodynamic force were introduced. The transport coefficients were defined as a convolution of mono-
energetic transport coefficients with Maxwell-Jiittner distribution function and corresponding weight function.
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INTRODUCTION

Non-relativistic neoclassical theory for toroidal de-
vices is commonly considered to be a matured field of
research given the extensive body of scientific literature
dealing with the topic [1, 2]. One of the most convenient
computational methods developed inside the theory for
determining neoclassical contributions to the transport
of plasma observables such as density, temperature and
current is the mono-energetic approach, which leads to
the so-called mono-energetic transport coefficients (see,
for example, [3] and the references therein).

In contrast to the widespread opinion [1, 2] that rela-
tivistic effects in fusion plasmas can be important only
for high-energetic groups of electrons with energies
close to mec® or exceeding it (say, runaway electrons),
relativistic effects was found to produce the non-
negligible contribution in collisional transport properties
of plasmas for the temperatures about few tens keV due
to the features of relativistic thermodynamic equilibrium
of electrons [4 - 7]. In order to take these effects into
account, one needs to reformulate the mono-energetic
drift kinetic equation and the definition of transport co-
efficients.

In this paper, we derive the neoclassical mono-
energetic transport coefficients for relativistic electrons
in hot plasmas. Rigorous relativistic description gener-
ally requires a covariant formulation [8]. However,
while Lorentz invariance is not important for neoclassi-
cal transport because the latter is limited to relatively
small characteristic velocities, non-covariant formula-
tion is better suited for the task since our goal is to keep
the form of equations as close as possible to the formu-
lation generally accepted in non-relativistic neoclassical
theory. This approach allows us to calculate the relativ-
istic mono-energetic transport coefficients using already
existed mono-energetic non-relativistic transport codes
like DKES [9]. Apart from this, it may be considered as
the tool for estimation of the applicability range of non-
relativistic neoclassical approach.

In section 2, relativistic mono-energetic drift kinetic
equation is formulated and a set of non-canonical ther-
modynamic forces is introduced. It is shown that for
compatibility with non-relativistic description it is nec-
essary to include the explicit temperature dependence in
the first thermodynamic force. In section 3, the transport
coefficients are derived as a convolution of mono-
energetic coefficients with the relativistic Maxwell-
Jittner distribution function and corresponding relativis-
tic weight function.
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1. MONO-ENERGETIC LINEAR DRIFT
KINETIC EQUATION FOR RELATIVISTIC
ELECTRONS

Similar to the non-relativistic consideration [1 - 3],
in order to obtain the neoclassical mono-energetic trans-
port coefficients for relativistic electrons in hot plasmas
(the ions are taken as non-relativistic) on the given
magnetic surface with label p, we start from the lin-
earized relativistic drift kinetic equation (rDKE) for
deviation from the equilibrium, fo; = f; — feo, induced by
gradients of thermodynamic quantities. Using the vari-
ables (1,&), where u = vy is the momentum per unit mass
with y = (14%/c})", & = (uwB)/(uB) is the pitch and B is
the vector of the magnetic field, the mono-energetic
rDKE can be written as

V(fo)=vp(WL(f,) = )
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where V= V-V, + E 8/0¢ is the mono-energetic Vlasov

operator,
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h = B/B is the magnetic field unit vector, V; is a gradi-
ent within the magnetic surface, E = E, + E,Vp is the
electric field separated to the toroidal (inductive) field
E, and the radial field, £, = -0®/0p with @ as plasma
potential; L = (1/2)0/0&((1-£%)6/6€) is the Lorentz opera-
tor which describes the pitch-angle scattering of elec-
trons and vp(u) is the relativistic electron deflection
frequency [10]. The radial component of the relativistic
drift velocity can be represented as
m_,cu’(1+&%)
=V, .Vp=—24""~ >~
p dr p 2e'Y B3

In order to exclude the local dependencies which do

not contribute to transport, the local equilibrium £y can
be represented as follows [9]:

e | E-B (EB) '

where the angle brackets (...) denote the flux-surface
average and the relativistic thermodynamic equilibrium
feuy 1s given by Maxwell-Jiittner distribution function,
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with Boltzmann factor, n, =n_,e”" "

, included. Here,
U = pw/Meo 1s the thermal momentum per unit mass

with py, = (zmeOTe)l/z» M = meOCZ/Te and

T e 15
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with K, the modified Bessel function of n-th order.
Then, the right-hand-side of Eq. (1) can be written as

RHS = _U_éi <EB> BfeMJ

v T. (B)
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where k = w(y - 1) is the relativistic kinetic energy,
normalized by temperature, and

K, 5 15 2
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is the relativistic correction term which appears due to
the specific feature of Maxwell-Jiittner distribution
function [4 - 7].

Now, let us introduce the relativistic thermodynamic
forces as follows:
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They are similar to the non-relativistic “canonical”
thermodynamic forces, but there is one very important
difference: in contrast to the “canonical” definition,
where only the dependencies from the local gradients
are present, 4; contains an additional relativistic factor
R and thus represents an explicit function of the electron
temperature 7.

Finally, we obtain the mono-energetic rDKE, which
can be solved by the DKES code [9]:

[alw%yf" Vpxh)vsfe ~Lerif)=

u

(10)
B[4, (0)+ kA, (0)] Sy ~EBAP) fus-

Due to the lack of derivatives of f;; with respect to u
and p in Eq. (10), their values can be treated as parame-
ters that leads to a considerable simplification of the
drift kinetic equation from five phase-space variables to
three (two angles at the magnetic surface and pitch).
Similar to the non-relativistic formulation [3], solution
of Eq. (10) is defined only by parameters yE,/u and
yvp(u)/u, which are, actually, nothing else as E,/v and
vp/v, respectively. This approach is sufficient to cover
the main features of the neoclassical radial transport
when applied for calculations of the transport coeffi-
cients and fluxes.
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2. RELATIVISTIC MONO-ENERGETIC
TRANSPORT COEFFICIENTS

Similar to [3], let us look for the solution of Eq. (10)
as
Ryu, P A
fel = u [Al + KAZ]feMer + ROASfeMJge , (1D
where R, is the reference value of the torus major ra-
dius, uq = meocz/(2eyRoBo) is characteristic of the radial
drift velocity and B, is the reference value of magnetic
field strength. Then the original drift kinetic equation
splits into a system of two independent dimensionless
differential equations:

R " R
y OV(fe)_y 0
u u

vo(WL(f,) = —ulp,
(12)

R . R "
y7‘)V(ge>— Vu‘) vo(WL(g,) = &b,

with b = B/B,. Here, first equation describes the radial
transport due to radial gradients, contained in 4 and A,
and second equation describes the parallel transport due
to a parallel electric field, contained in A3 (the factor y in

the Eq. (12) for f

. 1s kept with the only purpose to
keep the form of equations as similar as possible to the
corresponding non-relativistic equations).

Within neoclassical formalism, the relationships be-
tween the flux-surface-averaged fluxes, I;, and the ther-
modynamic forces which drive them, 4;, can then be

expressed as

3
I=-n,Y LA, (13)
j=1

where Ljj is the matrix of transport coefficients.

As was shown in [5], the relativistic flux-surface-
averaged flow /;, which is related to the radial compo-
nent of the particle flux density, I',, can be written in

the same form as the non-relativistic one,

L =(r, vp)=([d'upf.).

Next, [,, which is the radial component of the energy
flux density, Q,, is equal

1, :<%.Vp>:<.[d3ul<pfel>.

And the last, 5, is the parallel component of the
electron current density, J , is equal

_(Je'B>_ 3 E
13_—680 = jd uy&bfel . (16)

Expressing the fluxes /; through the thermodynamic
forces, the mono-energetic solutions of Eq. (12) may be
used to determine the transport coefficients by energy
convolution with the local Maxwell-Jiittner distribution
function,

2 x +1
L :ﬁCMJ(“r)Jd3K\/Ee Y\/YTDij(K)hihj’ an

where h; = h3 = 1, h, = « and Dj;(x) are the mono-
energetic transport coefficients, defined below. If one
compares the expression for relativistic energy convolu-
tion given by Eq. (17) to the corresponding non-
relativistic formula [3], one may find that an additional
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relativistic factor y,/(y+1)/2 appears under integral,
along with expected normalization coefficient Cy;(,),

which arise from Maxwell-Jiittner distribution function
and the use of relativistic kinetic energy, k = p(y - 1),
instead of non-relativistic one, K = mv T

Finally, the relativistic mono-energetic transport co-
efficients Dj; for electrons are defined here as follows:

WR, [¢+1 .. p 2
D,=D,=D, =D, = _S_uo<".“ d};u_fe >
d

w,R, [ ¢+ O .
D]3 = D23 = _M<J'1 dguige>9
d

? (18)
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Of these mono-energetic coefficients, Dy is related
for description of the radial transport, Ds; of the parallel
transport, D,; is characteristic of the Ware pinch and
D5 of the bootstrap current. Only three of these coeffi-
cients are independent, however, as Dj3 = —Dj; due to
Onsager symmetry.

CONCLUSIONS

Following the standard approach to neoclassical the-
ory, the relativistic mono-energetic drift-kinetic equa-
tion for hot electrons is considered. Due to a specific
features of the Maxwell-Jiittner distribution function,
the relativistic correction term appears in the first ther-
modynamic force. By splitting the mono-energetic
rDKE in two independent equations which correspond
to the different thermodynamic forces, the set of trans-
port coefficients is obtained. Using this scheme, relativ-
istic transport coefficients can be found by re-
interpretation of the solution from the non-relativistic
transport codes. The solution of rDKE for given values
of yE,/u and yvp(u)/u and velocity y/u = v, should be
interpreted as the same non-relativistic function of
pitch-angle with different velocity v and parameters
E,/v and vp(u)/v, such that these parameters should co-

incide numerically. Then the transport coefficients can
be calculated through the convolution of mono-
energetic transport coefficients with Maxwell-Jiittner
distribution function and specific relativistic weight
factor.
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PEJATUBUCTCKUE MOHOSHEPI'ETUYECKHUE KO®PUIIUEHTHI HIEPEHOCA
B TOPSIYEM IIJIABME
HU.H. Mapywenxo, H.A. A3apenkog

[Ipoananu3upoBaHO PENSATUBHCTCKOE MOHORHEpPreTHYECKoe ApeiioBoe KMHETHUECKOE YpaBHEHUE AN Topsdei
TOPOUAANBHOM IU1a3MBL. J{J11 COBMECTUMOCTHU C HEPEIATHBUCTCKUM (hOpMaIn3MOM ObUTH BBEICHBl HEKAHOHUYECKUE
TEPMOAMHAMUYECKHE CHJIbI, COJEPIKAIe JOMOJIHUTEIbHBIH TEeMIepaTypHO-3aBUCHMBIN WIEH B IEPBOM TEPMOIM-
Hamuueckor cuiie. KoadduipenTsl nepeHoca mnojy4eHsl B BUJE CBEPTKM MOHOIHEPreTHYECKHX Kod(duimeHToB
nepeHoca ¢ ¢yHkueil pacrpeneneHus Makcsemia-lOTTHepa, omuchiBaoneld TEPMOIMHAMHYECKOE paBHOBECHE B
PENSITUBUCTCKOM Ta3e, U COOTBETCTBYIOLIEH BECOBOM (pyHKLIMEH.

PEJIATUBICTCHKI MOHOEHEPTETUYHI KOE®IIIEHTH MIEPEHOCY B FAPSUIN IJIA3MI
I.M. Mapywenxo, M.O. A3apenkos
IIpoaHaiizoBaHO PEISATHBICTCHKE MOHOCHEPIeTHYHE Apei(oBe KIHSTHYHE PIBHIHHS IS Tapsdoi TOPOigabHOT
wiasmMu. st CyMICHOCTI 3 HepesIsITHBICTCHKUM (opMani3aMoM OyJiM BBEJCHI HEKaHOHIYHI TEPMOIMHAMIYHI CHIIH,
110 MICTSITh IOJaTKOBHH TeMIIEpaTypHO-3aJIeKHUN WieH y nepluiid TepmoanHaMiuHiil cuii. Koediuientu nepenocy
OTpPHMaHI Yy BHIJISI 3rOpTKa MOHOCHEPIeTHYHUX KOCQIIi€HTIB mepeHocy 3 (yHKIE posmnonity Makceemia-
IOTTHEpA, M0 ONHCYE TepMOAMHAMIYHY PIBHOBArY B PEJISITUBICTCHKOMY I'a3i, Ta 3 BIIIOBIAHOIO BaroBoro (GyHKII€r0.
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