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Following the ideas of D.A. Kirzhnitz [1], the E,E,B — representation of the electrodynamic Kramers-Kronig

relation is used to study the longitudinal and transverse permittivity properties of response functions of the isotropic

medium. Also, the E, E,T),ﬁ —representation permits studying the properties of the magnetic permeability.

PACS: 52.25.Kn; 77.22.Ch

INTRODUCTION

The electrodynamics without account of spatial dis-
persion makes use of the Kramers-Kronig relation for-
mulated for the permittivity g(g). It is assumed that

the permittivity is exactly the function representing the
electrodynamic response to external disturbances, and
hence should be analytical in the upper half-plane of the
complex frequency plane. For the case of non-
conducting media the relation was analyzed in detail by
Landau and Lifshitz [2, para 82]. The real part of the
Kramers-Kronig relation for non-conducting media
yields
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In the case of conducting media the imaginary part
of the g(@) for possesses a pole in the low frequency

range, Im g(a)) =4 7T s /| (D, where o = const is the

d.c. conductivity of the medium. According to [2], this
pole can be taken into account through a simple substi-
tution in Eq.(1), namely
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The value ﬂlz can be either greater or smaller than
one, and therefore 8(0) can assume both positive and

negative values. It is this property that was stressed in
paper [3] where a Lorentz approximation for the
Re £(0) of plasma-like media was first derived,
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Here ¢ = NAze*n/m is the plasma frequency

for charge -carriers (n is their number density;
e is charge, and m mass), and v the inverse time of mo-
mentum relaxation. The electron gas of metals is always
characterized by Reg(0)< 0, while electrolites with

heavy weight of carriers probably Re £(0)> 0, i.e. the
size Re £(0) can be both positive, and negative.

A Kramers-Kronig relation for the magnetic perme-
ability ,u(a)) is written in [2] in a quite similar way,
with the assumption that

#(0)> i, “)
ISSN 1562-6016. BAHT. 2013. Ne4(86)

where <1 is the value of the magnetic permeability

at a limiting frequency (in the optical frequency range)
above which the permeability loses sense at all (see [2],
para 79). The magnitude of x(0) for paramagnetic media
is 1(0)>1, while for diamagnetic media 4(0)<1,

however the inequality Eq.(4) is always satisfied.
BASIC PART

D.A. Kirzhnitz noted in 1976 [1] that the actual re-
sponse functions are not the dielectric and magnetic
permittivities but rather the functions

1
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written in the /| B, D — representation with allowance
for spatial dispersion of the medium [4]. Taking into
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account the known relationship of the £,B,D and
E,E,B,ﬁ electrodynamics representations [4], viz.
&' (w,k) = e(w,k) and

—ﬁ - /;)cz le"(@.0)~ &' (@,h)],

we are able to re-write the functions Eq.(5) in a form
convenient for the analysis of magnetic media,
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Specifically, it is the functions of Eq.(5) and Eq.(5,a)
that are analytical in the upper half-plane of the com-
plex frequency plane.

The longitudinal dielectric permittivity &' (e, k)

Fy(o,k) =

was given a detailed analysis in [1], proceeding from the
Kramers-Kronig relation,
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A fact of significant importance, specially under-
lined in paper [1], is that the inequalities Eq.(7) permit
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existence of equilibrium media not only with positive,
but also with negative values of g/ (0,k), (unlike

Eq.(1)). According to Kirzhnitz [1], this provides an
explanation to the existence of superconductors as equi-
librium media.

It should be noted, however, that the inequalities
Eq.(7) are valid, both for non-conducting and for con-
ducting media, solely in the limit @ /k — 0. It is known
[4] that the point @ = 0,k = 0 is an essential singularity
for the dielectric permittivity functions. At @/ k — 0 the
function gl(a)’k) remains finite for non-conducting, as

well for conducting media. Evidently, this point is essen-
tially singular for the response functions Eq.(5), too. This
is something to be taken in consideration in the analysis
of the Kramers-Kronig relations for the response func-
tions. In particular, in the limiting case k/w — 0,

where  &'(@,0) = &"(®,0) = &(®)> ¢ behaves as
gl (a)) ~4mi/ @ in the low frequency range. This

pole needs being taken in consideration in the analysis
of the Kramers-Kronig relations, exactly which will be
done below.

3. First, we will analyze the response function
F,(w,k) which involves the transverse dielectric per-

mittivity. As far as we know, the Kramers-Kronig rela-
tion for this function was seriously discussed, with re-
spect to the magnetic permeability 1w, k), in the

monograph [5] alone (earlier results of paper [6] were
not sufficiently grounded, as noted in [1]). The results
obtained in [5] can be expressed as the inequalities

u(0,k) 2%dw' 1
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The static magnetic permeability differs from unity
only for magnetic (and hence, quantum-physical) media
which the inequalities Eq.(8) relate to. Note now that in
the case of magnetic media the low-frequency limit
reads as

g(a),k))=1—i+i{47m(k)/w )
»’ y(k)ow

The upper line in Eq.(9) refers to conducting mag-
netic media and the lower one to non-conducting. It
follows from Egs.(8) - (9) that
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For paramagnetic materials (i.e. 1(0,k) > 1) we

(10)

have ¢ < (,while for the diamagnetic (including super-

conductors), ¢ > 0.
Now we aim at writing a Kramers-Kronig relation
for the function

k*c? 1 L " (w,k)
o |-’ (k) K| K-’ (k)
(11)
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The real part of this relation, taken in the d.c. limit
for a classic medium (characte-rized by a sole first order

pole in &” (e, k)), can be represented as
Re&" (0,k)k*c* —(4no)
'kt -
do' ke? [Imgtr (wv,kﬂ 4o
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When deriving this relation, we have considered the
low-frequency pole in the verse dielectric permittivity,
Ime"(w,k)— 4no(k)/ @ at @ — 0,where o(k) is
the d.c. conductivity of the medium. As follows from
Eq.(10),

£"(0,k)=(4nc | ck) -k’ p;,  (13)
i.e. the transverse permittivity g (0, k) for conductors
can assume both positive and negative values. Interest-
ingly enough, Eq.(13) is also valid in the limit
k /@ — 0 when spatial dispersion can be neglected.
Hence, it should be true for the longitudinal permittivity
in this limit, too. As for non-conducting (o = () me-
dia, Eq.(10) gives for the real part

Reeg"(0,k)
e
2k T do Ims" (k)

_>0, Re”(0,k) >0,
2.2 2t !
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(14)
so that the inequality ¢ (0,k) >0 always holds.

PRINCIPAL CONCLUSIONS

1. The Kramers-Kronig relations should be applied
not to dielectric permittivities but rather to response
functions of a medium,

F(ok)=———
& (w,k)
and 1

bk = o

2. For the longitudinal dielectric permittivity of non-
conducting media (as well as of conducting media with
spatial dispersion, i.e. with @ /k << 1) the inequality
Eq. (7) is valid, namely

1
—— <1
Res&'(0,k)

3. For the transverse permittivity of classical con-
ducting media the relation Eq.(13) is true, which also
remains in force for the longitudinal dielectric permit-
tivity under the conditions allowing the spatial disper-
sion to be neglected,

&"(0,k) = (4no | ck)’ =’k ;.
4. In the case of classical non-conducting media the
inequality Eq.(14) is always valid,
Reeg”(0,k) > 0.
5. The magnetic permeability obeys the inequality
Eq.(8),

2(0,k) > 0.
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O COOTHOIEHUSX KPAMEPCA-KPOHUT' A C YYETOM IMPOCTPAHCTBEHHOM JUCITEPCUA
B.Il. Maxkapos, A.A. Pyxaose

B passurue uzpeit J[.A. Kupxknuna [1] ¢ nomomsio cootHommenuil Kpamepca-Kponura B anexTpoarHamMuke B
E, B, D -TIPEACTABICHHN HCCICAYIOTCS CBOMCTBA MPOAONBHON U IOIEPEIHON JUAICKTPUYCCKUX MPOHULACMOCTEH

s QYHKUMH  DJIEKTPOJMHAMMYECKOTO OTKJIMKA H30TPONHON cpenbl. B snektpopunamuke B £ B D, H -

MMpEeACTAaBJICHUN UCCICI0OBAHbI TAKKE CBOMCTBA MarHUTHOM MMPOHNITAEMOCTH CPCAbI.

PO CHIBBITHOIEHHS KPAMEPCA-KPOHIT' A 3 YPAXYBAHHAM ITPOCTOPOBOI JTUCITEPCII
B.I1. Maxkapos, A.A. Pyxaose

V¥ possutok ineit J.A. Kupxuuus [1] 3a nonomororo criBBigHomens Kpamepca-Kponira B enexkrpoauHamini B
E, B, D -YABJICHHI JOCII/UKYIOTbCSl BIACTHBOCTI MOB30BXKHBOI Ta MONEPEYHOI IIeNEKTPUYHNUX IPOHUKHOCTEH Uit

(QyHKLi eNeKTpoAMHAMIYHOIO BiATYKY i30TPOIHOrO cepenoBMiNa. B enekTpopuHamiui B E, B, D, H -ysABJIEHHI
JTOCITI/KEHI TaKOX BJIACTUBOCTI MarHiTHOI MPOHUKHOCTI Cepe0BHIIA.
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