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In the approximation of unpolarized nuclear matter, the optical potential for nucleon-nucleus scattering is calculated

on the basis of the effective Skyrme interaction with allowance for tensor nucleon-nucleon forces. It is shown that

the tensor Skyrme forces make a significant contribution to the imaginary part of the optical potential. The effect of

tensor nucleon-nucleon forces on the radial distribution of the imaginary part of the optical potential is investigated

by considering the example of elastic neutron scattering by “°Ca nuclei at scattering energies of about a few tens of

megaelectronvolts.

PACS: 21.30.+y, 24.10.Ht, 24.10.Cn

1. INTRODUCTION

In the approximation of nuclear matter, the nucleon-
nucleus optical potential obtained by calculating the
mass operator for the single-particle Green’s func-
tion [1, 2] is considered here for the effective density-
dependent nucleon-nucleon Skyrme interaction [3-5].
It is well known [5, 6] that the effective nucleon-
nucleon Skyrme interaction involves components de-
scribing tensor interaction between intranuclear nu-
cleons. However, tensor nucleon-nucleon forces are
usually disregarded in studying the structure of nu-
clei and various collective phenomena in them [7], as
well as nucleon-nucleus scattering [8-10]. It should
also be noted that the disregard of tensor nucleon-
nucleon forces is characteristic of various calculations
based on Skyrme forces or on other effective nucleon-
nucleon interactions [7]. In many cases, this is justi-
fied, since any density-dependent effective nucleon-
nucleon interaction, including the Skyrme interac-
tion, takes partly into account the contribution of
tensor forces [11]. For example, the effect of tensor
Skyrme forces on the single-particle spectra of some
even-even nuclei was analyzed in [5], where it was
shown that the contribution of these forces is not deci-
sive for the features of these spectra. The optical po-
tential for the interaction of nucleons with even-even
nuclei was investigated in [12] without taking into ac-
count tensor forces. As was shown in [13], however,
the tensor component of the effective Skyrme inter-
action makes a significant contribution to the central
and the tensor spin-spin potential for the interaction
of nucleons with odd nuclei. Hence, it is of particu-
lar interest to investigate the effect of tensor Skyrme

forces on the optical potential for the interaction of
nucleons with even nuclei. In the present study, the
nucleon-nucleus optical potential is analyzed on the
basis of a calculation of the mass operator for the
single-particle Green’s function [8-10, 12], this calcu-
lation being performed with allowance for the tensor
component of the effective Skyrme nucleon-nucleon
interaction. It is shown, among other things, that, in
the Hartree-Fock approximation (within the method
used here, this is the zero-order approximation [12]),
the tensor nucleon-nucleon interaction does not con-
tribute to the mass operator that is, to the real part
of the optical potential. In this mass operator, the
expression that determines the imaginary part of the
optical potential develops, however, in the second or-
der of perturbation theory in the effective nucleon-
nucleon interaction [12], additional terms that are
quadratic in the parameters of the tensor Skyrme in-
teraction. The effect of the tensor Skyrme forces on
the radial dependence of the optical potential is an-
alyzed here by considering the example of neutron
scattering by 4°Ca nuclei.

2. OPTICAL POTENTIAL

Let us represent the effective Skyrme nucleon-nucleon
interaction in the form [4, 5]

(1)

where v and vy(p) are the components that are, re-
spectively, independent of and dependent on the den-
sity p, while v, and vy, are, respectively, the even and
the odd component of the tensor interaction. The
terms appearing in expression (1) are given by

v =01 + v2(p) + Ve + Vio

*Corresponding author E-mail address: kravchenko@ipfcentr.sumy.ua

58 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).

Series: Nuclear Physics Investigations (60), p.58-62.



1
v = to(1+ 20 Pp)d(x) + 5t (1 +21Py) [k’25(r) + 5(1-)1{2} +to(1+ 22 P, K 5(r)k +

+iWy [kl X (S(I‘)k] (0’1 + 0'2)7 (2)

vs(p) = %t3<1+x3Pa>pV<R>6<r>+3t4<1+x4Pa> [KZp(R)3(x) + 3(x)p(R)K?| +15 (1425 P, K p(R)S (1)K, (3)

2

b = iT{ (@1 K2 ) = (o)l | 3w) 4 000) | (1210~ (e )k } L@

Vto = U {(0’1 . kl)(S(I')(O'g . k)

where the notation used is identical to that in
[4,5,7,9,10]. In the approximation of unpolarized
nuclear matter (that is, for even-even nuclei), the
real part of the optical potential U,, based on the
interaction in (1) with v;e = vy, = 0 was calculated in
[12]. The corresponding expression for U, presented
in the Appendix.

Since the potential U,, determined by the anti-
symmetrized diagonal matrix elements of the interac-
tion in (1) [7, 12], the tensor nucleon-nucleon interac-
tion specified by Eqgs. (4) and (5) does not contribute
to the real part of the optical potential in the approx-
imation of unpolarized nuclear matter.

In the second order of perturbation theory in
the effective nucleon-nucleon interaction, the imagi-
nary part of the mass operator for the single-particle

- jlon oI 50 | 5)
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Green’s function is given by [8-10,12]

Maa(e) = =1 S {avolhu) (ulo(1 — P)lav) x
Ay

X(1=nx)(1—nu)no(e+e, —ex—eu), (6)

where a, v (A, p) are quantum numbers that charac-
terize states of two interacting nucleons, €, stands for
single-particle energies, n, are occupation numbers,
and P is the operator executing the permutations of
spatial, spin, and isospin variables.

Substituting the Skyrme interaction specified by
Egs.(1)-(5) into (6) and replacing single-particle wave
functions by plane waves, we represent the imaginary
part of the optical potential in the form
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where p = p(r), gij = tit; (1 + iy + 2 5 xj)

hij = tit; (xi+xj+71+2‘”ixj), i,j = 0,1,....5

and
Ii(Ta,Tu) =
= /de,dK)\dKVfl (Ka7K;1,7K)\)KV) X

x0(E4e,—ex—e,)d (Ko+K,—K\—K,) x

xn,(1—ny\)(1—-mn,),i=1,...,7. (15)

In expressions (15) 7, is the isospin index of the p
state (7, = n for neutrons and 7, = p for pro-
tons) with 7, = 74, 7, = 7,, while the functions
fi Ko, K, Ky K) (0 =1,...,7) are given by [§]

2
h=1kL=K, +K3, f; = (K3, +K3,) .
f4 = KLYHK)\V7 f5 = (Kiu + Kiy) (KOL;AK)\V) 5
f6 = (KauK/\V)Qaf7 = (Kau X K)\V)27 (16)

where K., = (Ko, —K,,)/2, Ky, = (Kx —K,)/2.
The integrals in (15) can be calculated analytically
[8]. For the case of symmetric nuclear matter (that
is, for nuclear matter consisting of an equal number
of neutrons and protons) considered below, the corre-
sponding expressions are presented in the Appendix.
Thus, we see that, in expressions (10) and (12)-(14),
which determine the imaginary part of the nucleon-
nucleus optical potential, there arise terms describing
the contribution of the tensor nucleon-nucleon inter-
action [recall that it is specified by Egs.(4) and (5)],
which are quadratic in the parameters T" and U of
this interaction.

3. RESULTS

For the example of neutron scattering by 4°Ca nuclei,
in which case the approximation of unpolarized sym-
metric nuclear matter is valid, we further consider
the effect of tensor nucleon-nucleon forces on the ra-
dial distribution of the imaginary part of the optical
potential.

As was mentioned above, virtually no parametriza-
tions that are currently used for the effective Skyrme
interaction include the parameters 7' and U, which
characterize the strength of tensor forces. They
were taken into account only in [5, 6]; it should be
noted that three-particle velocity-dependent Skyrme
forces were used in [6], whereas a two-particle density-
dependent effective interaction is employed here.
Two approaches to parametrizing tensor Skyrme
forces were proposed in [5]. The first approach re-
duces to calculating the parameters T" and U on the
basis of a specific realistic potential for free nucleon-
nucleon scattering, while the second one consists in
fitting these parameters on the basis of an analysis
of the single-particle spectra of the *3Ca, 56Ni, and
208ph nuclei.

In [13], both these parametrizations of the tensor
forces were used in studying the real part of the opti-
cal potential for the interaction of nucleons with odd
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nuclei. As a result, it was shown that the second ap-
proach is preferable in describing experimental data
on elastic nucleon-nucleus scattering. In this study,
we therefore use the T and U values that were ob-
tained from the analysis of the single-particle nuclear
spectra.

According to [5], the admissible values of the parame-
ters T'and U (under the condition that the remaining
parameters of the effective interaction (1) are preset)
are constrained as

g+ fo>0,-80 < <0,0< 5, <80,  (17)
where
ap = iU + 1(151 —tg) — 1(1519:1 + taxa),  (18)
12 8 8
Bo= 2(T4U) - Ltw +toza).  (19)
24 8

In the particular case of oy = By = 0, we obtain
T = —U = 163.5 MeV fm® for the SkM* parame-
trization [14] and T = —U = 191.574 MeV fm® for
the Ska parametrization [15].

Table 1. Volume integrals and root-mean-square
radii of the imaginary part of the optical potential
for elastic neutron scattering by 4° Ca nuclei at
E =0 and E =50 MeV according to the calculation
performed with (W (r)) and without (Wy(r))
allowance for the tensor Skyrme forces; (also
presented are the analogous results for the
phenomenological optical potential W (r) [18])

Jw, MeV fm3 rw, fm

SEM* | W(r) | 75.40 | 462.40 | 4.03 | 4.39
Wo(r) | 71.31 | 414.89 | 4.08 | 4.50

Ska | W(r) | 43.91 | 268.48 | 4.06 | 4.34
Wo(r) | 40.75 | 230.27 | 4.12 | 4.48
S3m | W(r) | 57.99 | 374.59 | 3.90 | 4.18
Wo(r) | 55.08 | 312.34 | 3.94 | 4.27

S4 [ W(r) | 25.93 [ 170.76 | 4.05 | 4.20
Wo(r) | 23.68 | 141.54 | 4.11 | 4.31

S5 | W(r) | 22.29 | 155.97 | 4.09 | 4.20
Wo(r) | 20.18 | 127.36 | 4.15 | 4.29
W(r) | 52.20 | 81.64 | 4.84 | 4.35

In order to characterize the radial distribution of
W (r), the values of the volume integrals Jy,

1

Jw = —Z/d?’rW(r), (20)

where A is the number of intranuclear nucleons, and
the values of the root-mean-square radii ryy,

[ W(r)
W= [ d3rw(r)

are listed in Table 1. We note that the inclusion of
the tensor Skyrme forces leads to an increase in the
volume integrals and to a decrease in the root-mean-
square radii, the relative contribution of the tensor

(21)



forces becoming greater at higher scattering energy.

Table 1 also displays the values of Jy and ry for the
S3m, S4, and S5 forces [17] and for the phenomeno-
logical optical potential (last row in the table) that
was obtained from an analysis of experimental data
on elastic nucleon-nucleus scattering [18]. The best
agreement is achieved if we use the S4 and S5 forces
(up to 50 MeV) and the Ska and S3m forces (up to
20 MeV). At the same time, the best description of
the real part of the optical potential (A.1) is obtained
with the S3m, Ska, and SkM* Skyrme forces (Table
2).

Table 2. Volume integrals and root-mean-square
radii of the real part of the optical potential for
elastic neutron scattering by *° Ca nuclei at E =0
and E =50 MeV according to the calculation that
employs various parametrizations of the Skyrme
forces (given additionally in the last row are the
analogous results for the phenomenological optical
potential from [18])

Ju, MeV fm? ry, fm
SkM* | 498.75 | 426.93 | 3.91 | 3.98
Ska | 464.29 | 315.05 | 3.89 | 4.01
S3m | 463.15 | 374.59 | 3.82 | 3.88
S4 431.01 | 206.92 | 3.86 | 4.02
S5 420.47 | 145.30 | 3.87 | 4.05
500.67 | 373.75 | 4.06 | 4.06

In Table 2, the quantities Jy and ry are defined
in the same way as the quantities Jy (20) and ry
(21) and the values in the last row correspond to the
phenomenological optical potential from [18].

4. CONCLUSIONS

Thus, we have demonstrated that the tensor nucleon-
nucleon forces determine, to a considerable ex-
tent, the imaginary part of the optical potential
for nucleon-nucleus scattering, the main contribution
coming from the component of the tensor forces that
corresponds to the interaction of two nucleons in odd
states of their relative motion.

The present analysis has revealed that, at least for
E < 20 MeV, the optical potential for nucleon-
nucleus scattering can be calculated by using the S3m
and Ska forces. In order to achieve better agree-
ment between the microscopic optical potential and
phenomenological ones, it seems necessary to calcu-
late simultaneously the basic properties of nuclei and
the relevant optical potentials. Preliminary calcula-
tions show that even a small (smaller than 5%) varia-
tion in the parameters ty and t3 of the Skyrme forces
makes it possible to improve considerably the accu-
racy in describing elastic nucleon-nucleus scattering,
basic properties of bound nuclear states concurrently
undergoing only minor changes (within 1%). Another
way to improve the results obtained here consists
in studying more comprehensively and consistently
taking into account those components of the Skyrme

forces that are proportional to the parameters t4 and
ts. These terms make a dominant contribution to
the Hartree-Fock potential (and, hence, to the opti-
cal potential) only near the nuclear surface and, in
principle, enable one to describe better the smearing
of the surface nuclear layer.

APPENDIX

In the approximation of unpolarized nuclear matter,
the real part of the optical potential is given by [12]

my, 1
Usa(r, E) = - {goﬂ—hopa+4H[91+92+(Q4+g5)0]_

1 1
—falln —he + (ha = hs)p] + 297 (930 — hapa)+

1 1
+Z(g4 +95)pK — Z(hzx — hs) Zq: Pqkq+
1 —1 2 2
+557" (93/7 —hs) pq> }+

q
(1 m2>
Ma,

where m, is the mass of the incident nucleon; M
is the target-nucleus mass; E is the scattering en-
ergy; a = {n,p} is the isospin index; g; = (1 +
x;/2) and h; = t;(1/2 + x;) with ¢« = 0,1,...,5,
k= %(37r2p/2)2/3p, Ko = %(37r2pa)2/3,0a; and
my, is an effective mass that satisfies the relation

M
M + mg,

E, (A1)

Me 12

Mg
:]_ —_—— P
me =1t gz llor g2+ (94 +95)rlp

—[h1 = ha + (ha — h5)plpa}t (A2)
In the approximation of symmetric nuclear matter,
we have p, = p, = p/2, m; = m; = m*, while the
integrals in (15) become (8]

2m* 272 [
h? 15K,

I = (5K2 —TK2)K 3+

+2(2K% — K2)5/20(2K% — K2)| , (A3)

o 2m (35K — 14K2K2 — A5K4) K3+
2 h2 105Ka a alYF F F
HA(KZ 4+ 5K3) (2K 7 — K2)°/?0(2K7 — K2)], (A4)
m* 2
I3 = — 15K + 441 K4 K2 —
3 h2 945Ka[(3 5 a+ a'*F

—TATK2 K} — AT3KS) K3 —
—8(5K* —20K2K?% — 43K+)(2K2% — K2)%/?x

x0(2K7 — K2)), (A5)
I, =15 =0, (A6)
m* 2
Is = — 105K% —189K4 K2
6 4h2 945Ka [( « « F+
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X (2K% — K2)7/29(2K2% — K2)], (A7) 8. QingbiaoShen, Jingshang Zhang, Ye Tian, et al.

17 — ]3 _ Iﬁ, (AS) // Z. Phys. 1981, V.A303, p.69.
. . 1/3 .
where H(x) is a theta function, K = (37%p/2) " is ¢ Lingxiao Ge, Yizhong Zhuo, and N. Wolfgang //
the Fermi momentum, and Nucl. Phys. 1986, v.A459, p.77.
2m, M
2 o
Ko = n2 (M + maE - Uaa) : (A9) 10. Guo-QiangLi, Jian-QingShi, and QinGao //

Nucl. Phys. 1990, v.A515, p.273.
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BJINSIHUE TEH30PHBIX HYKJIOH-HYKJIOHHBIX CIJI HA HYKJIOH-SIIEPHBII
OIITUYECKUI IIOTEHIIUAJI

C.M. Kpasuenxo

B npubnnkennn HEMOIPU30BAHHON AI€PHOY MATEPUN PACCINTAH ONMTUIECKUIT IOTEHIINA HYKJIOH-sIIEPHOTO
paccesiausi Ha ocHOBe 3ddekTuBHOrO B3ammoseiicTBusg CKUpPMa ¢ yIEeTOM TEH30PHBIX HYKJIOH-HYKJIOHHBIX
cui. Tlokazano, 9ro TeH30pHBIE cuibl CKUpPMa AIOT CYIECTBEHHBIN BKJIAJ B MHUMYIO 9aCTh ONTHIECKOTO
norenuasa. Ha mpumepe ynpyroro pacceanus meiirponos gapamu ‘0Ca mccie1oBaHo BIHSHEE TEH30PHBIX
HYKJIOH-HYKJIOHHBIX CHJI HA Pa/IMaJIbHOE PACIIPe/ieJleHre MHUMOM 4acTU OINTUYECKOI'O TIOTEHIAJIA IIPU SHEP-
T'USX PacCcesHUs B HECKOJIBKO JIECATKOB MEra’djeKTPOHBOJIBT.

BILJIB TEH30PHUX HYKJIOH-HYKJIOHHIX CWJI HA HYKJIOH-SIIEPHUII
OIITNYHNN ITOTEHIIIAJI

C.M. Kpasuenxo

Y HabIMKeHH]I HETO/ITPU30BAHOI SI€PHO] MaTepil pO3paxoBaHuil ONITUIHNN TOTEHIAT HYyKJ/IOH-SIePHOTO PO3-
cistHHsI Ha, 0CcHOBI edpeKTUBHOI B3aeMo/1ii CKipMa 3 ypaxyBaHHSIM T€H30PHUX HYKJIOH-HYKJIOHHUX cuil. JloBese-
HO, 110 Ten30pHi cuyin CKipMa Jaf0Th iICTOTHUI BHECOK B YsIBHY YACTHHY OIITUIHOrO rmoTeHIiary. Ha npukirai
HPY?KHOTO po3ciguns meirponis supayu 4°Ca T0C/TiIKEeHo BIUIB TEH30PHUX HyKJIOH-HYK/IOHHUX CIJI Ha, Pa-
JaJbHUN PO3IOJIJI YABHOI YaCTUHUA ONTUYHOTO TMOTEHIAy IPU €HEpPrisgX PO3CIgHHHA B JIEKIJIbKa JIECATKIB
MeraejeKTPOHBOJIBT.
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