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A method of numerical analysis of positron annihilation lifetime spectra has been devised. A new approach to

determine the number of components in a spectrum was proposed and regularization procedure to solve the inverse

problem concerning the estimation of useful components characteristics was formulated. The results obtained for

model spectra demonstrate high resolution capability of proposed method.

PACS: 78.70.Bj

1. INTRODUCTION

One of the key problem in the modern nuclear power
industry is the insufficient radiation resistance of
the main structural materials of operating nuclear
plants – of different classes stainless steels and of zir-
conium alloys. In particular, austenitic steels are
characterized by a strong radiation swelling, which
is related to formation during irradiation of vacancy
clusters – microvoids and vacancy loops [1]. Positron
beam presents a unique probe for vacancy-type de-
fects.

The positron is an antiparticle of the electron,
which has the same mass (0.511 MeV/c2), but a
positive charge. After implantation into solid ener-
getic positron quickly loses its energy and thermal-
izes (for ∼ 3 ps). Thermalization time is much less
than its mean lifetime.

After reaching thermal equilibrium with the host
positron is scattered by phonons and walks randomly.
The random walk lasts much longer than the thermal-
ization process, i.e. between 100 and 500 ps. Due to
the repulsion of positively charged ion cores and the
attraction to the conduction electrons positron local-
izes mainly in the interstitial space and its positive
charge causes that it annihilates mainly with the va-
lence or conduction electron. The probability of the
annihilation with the core electrons is much lower. In
perfect crystal all positrons annihilate with the same
rate λb which is the characteristic of material under
study.

In the crystal with structural defects positron may
be attracted to the local formations which are char-
acterized either by excess negative charge, or by in-
creased affinity to the positron. Such defects can
be defined as positron-sensitive. Vacancies, vacancy
clusters, as well as other local free volumes present
defects of the first type.

Each element has a unique positron affinity and
the latter may localizes within particular precipitates

of high affinity, which form the positron-sensitive de-
fects of the second type. Elements important in the
reactor material science, have the following values of
this characteristic [2]: Fe, -3.84 eV; Cu, -4.81 eV;
Ni, and Mn, -3.72 eV.

Positron annihilation spectroscopy (PAS) involves
mainly three methods of analysis:

• the temporal distribution of annihilation pho-
tons;

• the angular distribution of annihilation pho-
tons;

• the Doppler broadening of the annihilation line
with the energy of 0.511 MeV.

The first of these techniques gives information on
the electron density of the material at the place of
annihilation, and two others – information on the
momentum distribution of the electron-positron an-
nihilation pair and consequently information of the
chemical environment of the annihilation site.

Positron lifetime τ is determined by the overlap of
the electron density n−(r) and the positron density
n+(r) = |ψ+(r)|2 at the annihilation site

λ =
1
τ

= πr0c
2

∫
|ψ+(r)|2n−(r)γdr, (1)

where γ = γ[n−(r)] = 1 + ∆n−/n− – the correlation
function, which describes the increase ∆n− in elec-
tron density due to the Coulomb attraction between
a positron and an electron, r0 is the classical electron
radius.

Since an open-volume defect has reduced local
electron density, the positron lifetime in such de-
fect increases with respect to the defect-free sam-
ple. Thus, in experimental spectrum component with
longer lifetime, which is a measure of the defect size,
appears.

To measure the positron annihilation lifetime
spectrum most common source by far has been 22Na
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which has long half life (2.6 y) coupled with rea-
sonable price. The method consists in measuring
the counting rate of delayed coincidences between
nuclear γ-ray with energy 1.28 MeV generated si-
multaneously with the birth of positron in e+-decay
22Na → 22Ne + e+ + γ(1.28 MeV) and one of anni-
hilation γ-quanta of an energy of of 0.511 MeV.

The time difference between these two signals de-
termines the positron lifetime for a single event. The
lifetime is a random quantity and like any random
variable must be described by its probability distri-
bution function or equivalently by the set of all its
moments.

In a sample containing k various positron-
sensitive defects the positron lifetime spectrum has
the form

s(t) =
k+1∑

j=1

Ij
τj

exp

(
− t

τj

)
, (2)

i.e. is the weighted sum of (k + 1) identical distribu-
tions, each of which can be completely described by a
single moment – mean value τj or mean positron life-
time for the state j. The aim of the spectrum analysis
is the extraction from the experimental signal the set
of these parameters {Ij , τj} for j = 1, . . . , k + 1.

For particular defect mean positron lifetime de-
pends only on the type of defect, and corresponding
strength of this component, i.e. its intensity, is di-
rectly related to the defect concentration. In prin-
ciple, both items of information, i.e. the kind and
relative abundance of the defect under investigation,
can be obtained independently by a single measure-
ment.

For the analysis of positron lifetime spectra var-
ious approaches have been used but up to now the
most commonly used are approaches based on the
Gauss-Newton non-linear least square fitting [3]. It
is well known that it presents a time-consuming iter-
ative scheme of multidimensional minimization.

In the paper the new approach to this problem
is proposed. It is also based on a nonlinear least
squares method, but it uses efficient (fast) algorithms.
Within this approach we studied two problems.

The first one concerns estimation of the num-
ber of components which compose the experimental
positron lifetime spectrum. The conventional solu-
tion is to start with one-component fit and add com-
ponents as long as the variance of the fit decreases.
The weakness of this solution is well known: the vari-
ance of the fit usually does not reach a minimum value
but rather monotonically decreases with increasing of
model order.

Another problem concerns the ill-posed nature of
the inverse problem [4] under study. This means that
the problem is inherently unstable and so for its solu-
tion one have to use some sort of regularization pro-
cedure.

2. COMPUTATIONAL PROCEDURE

In experiment a continuous signal (2) is necessar-
ily discretized i.e. its sample values is measured in

the nodes of some uniform grid. In this case, the dis-
cretized spectrum of positron lifetime is defined as
a set of N data points x[1], x[2], ... , x[N ], corre-
sponding to values of the function s(t) at a points
t = 0,∆, ..., (N − 1)∆.

Real positron lifetime spectrum differs from this
model in that it contains not only the useful signal
but also a noise. Therefore let us try to estimate
this spectrum with a general p-membered model of
complex exponentials

x̃[n] =
p∑

j=1

Ajexp [(αj + i2πfj)(n− 1)∆ + iθj ] . (3)

Here i is imaginary unit; 1 ≤ n ≤ N ; Aj , αj , fj

and θj are the amplitude, damping coefficient, fre-
quency and phase constant accordingly for j-th com-
plex exponential. Note that we do not impose any
restrictions on the values of all these parameters. As
a consequence sum (3) may contains both pure de-
caying exponential, corresponding to the individual
distribution in the spectrum (2) and high-frequency
undamped sinusoid corresponding to the noise com-
ponent in the experimental signal. Accordingly, the
order of the model in general will be greater than the
number of states in the positron lifetime spectrum.

In shorthand notation one can write down the
function of discrete time (3) as

x̃[n] =
p∑

j=1

hjz
n−1
j , (4)

where
hj = Ajexp(iθj), (5)

zj = exp[(αj + i2πfj)∆]. (6)

For N sampled values one have to minimize the sum

ρ =
N∑

n=1

|ε[n]|2 , (7)

ε[n] = x[n]− x̃[n] = x[n]−
p∑

j=1

hjz
n−1
j , (8)

simultaneously over parameters hj , zj and the num-
ber of terms p. This is an extremely complicated
nonlinear problem even for the case where the order
p of the exponential model is known in advance.

The traditional way to resolve this problem im-
plies the application of iterative algorithms of multi-
dimensional minimization. This approach has the fol-
lowing shortcomings. These algorithms are tedious,
the obtained solution is very sensitive to the choice
of starting values of the independent variables and
the solution may converge to a local but not to the
global extremum in multidimensional space. However
these methods as a rule are very flexible and can be
applied to any non-linear approximation of sampled
values and not necessarily to the exponential one.

On the other hand for the latter approximation
there is a group of specially developed methods usu-
ally defined as the Prony method [5]. The Prony
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method is not iterative and reduces the nonlinear as-
pects of the problem to finding roots of polynomials.
It is worth noting that for the last task highly effec-
tive computational algorithms have been elaborated.
That is why the Prony method was used as the basis
for an effective scheme of interpretation of positron
annihilation lifetime spectra.

3. ANALYSIS OF THE MODEL
POSITRON ANNIHILATION LIFETIME

SPECTRA

On the basis of the Prony method the computer
code Q fit was written for processing positron anni-
hilation lifetime spectra. To test the performance of
this code we used several series of simulated spectra.
This approach is analogous to the one proposed in [6].
Moreover, in order to compare the results of process-
ing of the spectrum with different codes we used the
same set of input parameters as in [6].

For a given set of lifetime values and relative in-
tensities a number of different spectra were simulated
which formed the series. Each spectrum in the series
consists of a given number of counts. For each count
we first selected particular state in (2) in which the
positron annihilates and then for this state generated
one deviate with an exponential distribution func-
tion. In both cases the inverse function method was
used to transform the random deviate with a uniform
probability distribution.

Each spectrum then has been convoluted with a
spectrometer time resolution function which as in [6]
was taken in the form of the single Gaussian with
FWHM = 270 ps. For convolution we used a FFT-
algorithm after prior setting up of buffer zone of zero-
padded values at the end of a spectrum and bound-
ing the Fourier transform of spectrometer resolution
function. Similar algorithms were used for the inverse
operation of deconvolution.

Series A. [2 components: 150 ps (50%) , 250 ps
(50%); number of channels: 128; time calibration:
33 ps/channel; counts per spectrum: 2 × 106 ; num-
ber of spectra in a series: 5].

Let us use this simplest two-component spectrum
with well separated and equally intensive components
to illustrate the procedure of determining the number
of states in (2). First of all we applied the program
Q fit to the pure noise-free spectrum when the sam-
pled values were obtained by exact integration of the
useful signal (2) over the channels of MCA. For a suc-
cessively increasing order of exponential model (3) we
obtained:

1) p = 1: pure decreasing real exponential
(that is both frequency and phase constant are zero
within computational accuracy) and average lifetime
τ ≈ 195 ps.

2) p = 2: the single exponential splits into two
pure decreasing real exponentials whose parameters
are exactly equal to the input ones.

3) p = 3, 4, 5: all terms of the exponential model
can be subdivided into two subsets The first subset

is comprised of two real exponentials, the same as
in 2). The second subset includes the remaining ex-
ponentials of the model and all of them within the
computational accuracy have zero intensity.

4) p = 6: interruption in the subroutine for the
fast solution of the covariance equations of linear pre-
diction because in the iterative process the variance
of forward prediction became negative.

In Fig.1,a mean lifetime values of real exponen-
tials versus the order of exponential model are shown.
From this figure it is clear that the spectrum has two
components.

The same conclusion can be drawn from the vari-
ance of linear prediction versus the order of exponen-
tial model dependency (Fig.1,b). Indeed, the value
for p = 2 divides into two regions with sharply differ-
ent diminishing rate of variance of both the forward
and backward prediction. That is although for p = 2
the variance, strictly speaking, does not reach a min-
imum we nevertheless are able to figure out when
further addition of exponential terms does not lead
to any practically sufficient improvement of the ap-
proximation.

Unfortunately, for simulated spectra the situa-
tion is quite different. In this case the number of
counts on each grid point is subjected to the sta-
tistical fluctuation, and the spectrum as a whole
consists of the useful signal and a noise. For such
spectrum the variance of both forward and back-
ward prediction monotonically decrease as the or-
der of the exponential model increases. Therefore
in this case one have to use a different approach
to determine the number of states in a spectrum.

Fig.1. Application of the program Q fit to the
noise-free spectrum of series A: (a) mean lifetime
of pure decreasing real exponentials with nonvanish-
ing energy; (b) variance of forward (solid line) and
backward (dotted line) prediction

Fig.1,a contains a hint of this approach. We al-
ready noted that the processing of positron lifetime
spectrum belongs to the so called ill-posed inverse
problem. Let us recall briefly the basic ideas that are
used in inverse problem theory.
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As a rule we can define two positive functionals
A and B. The first of them measures the agreement
of a model to the data while the second one mea-
sures something like the ”smoothness” of the desired
solution.

When A by itself is minimized the agreement be-
comes very good, but the solution becomes unstable.
In another extreme case, minimizing B by itself gives
smooth solution that has nothing at all to do with
the measured data. So, the central idea in inverse
theory is to minimize the weighted sum of these two
functionals.

Increasing of exponential model order leads to the
improvement of the agreement between the solution
and the underlying spectrum, that this solution be-
comes closer and closer to the nonsmooth initial sig-
nal. But the solution sought must look like the useful
signal (2). So we have to smooth the derived solution.
One way to do this is to maintain in decomposition
(3) only a few most energetic pure decreasing expo-
nentials.

From a standpoint of signal processing the energy
E of a discrete sequence x[i] (i = 1, 2, ..., N) is defined
as

E =
N∑

n=1

|x[i]|2. (9)

Therefore all terms of the exponential approximation
can be divided into two subsets. The first one will be
comprised by pure decreasing real exponentials, that
is by terms j in (3) satisfying following conditions

αj < 0, |fj | < ε, |θj | < ε (10)

where ε is the machine-dependent precision parame-
ter which in our calculation was taken as 10−5. An-
other subset will contain the remaining exponentials
of the model, that is terms for which any of the con-
ditions (10) has broken down.

Let us restrict our consideration to the spectra
(most important for applications) which do not con-
tain very weak components. In this case we can pro-
ceed further with a classification of exponential terms
in approximation (3). For any spectrum we can cal-
culate its energy Es (9) and then leave in the first
group only those exponentials whose energy exceed
some prescribed fraction (say, 0.005) of Es.

Thus far we have classified only individual terms
of the exponential model. But there is also a restric-
tion which should be imposed on the first subset of
exponentials as a whole. Indeed, these exponentials
will form the useful signal (2) and this signal as any
probability distribution function should be normal-
ized. Therefore useful components in the approxima-
tion (4), must satisfy the following master conditions:

1) each of them is real and decreasing, i.e. satisfies
(10);

2) its energy is not negligible compared to the en-
ergy of the whole spectrum;

3) for a given order p these components as a whole
form a normalized probability distribution function.

And as a last step we can define the optimal range
of the exponential model as a range of p where the

number of its terms satisfying master conditions and
their mean values are virtually constant. The analysis
showed that for series A the optimal range is defined
by the following inequality 10 ≤ p ≤ 63. Thus, we
get the conclusion that a particular spectrum from
this series consists of two components and these two
components form the smoothed desired solution.

What we have just described can be viewed as a
way to determine the number of states in a positron-
lifetime spectrum and at the same time as a regu-
larization procedure applied to the inverse problem
under study.

Note that the algorithms used in code Q fit and
applied to the highest possible value pmax, gives at
the same time solutions for all orders p ≤ pmax with-
out any additional expenditure. Therefore the treat-
ment of the entire series of spectra are naturally di-
vided into two successive stages.

At the first one for a particular spectrum of the
series the procedure described above is applied. The
result is the estimations of number of states in the
spectrum and of optimal range of the exponential
model. At the second stage, these estimations are
used in the computational procedure as input para-
meters. The code Q fit for one particular value of
p from optimal range determines the parameters of
all components in the exponential approximation (3)
and divides them into two subsets. Then first sub-
set (forming the regular part of solution) is verified
relative to the master conditions. If both of the mas-
ter conditions are satisfied and at the same time the
number of states in the regularized solution coincides
with that defined in the first stage, then the found
solution is accepted. Otherwise, the next value of p
from the optimal range is selected.

To test and compare the performance of differ-
ent codes we defined artificial and very complex four-
component spectrum [6].

Series B. [4 components: 100 ps (25%), 250 ps
(25%), 600 ps (25%), 1000 ps (25%); number of chan-
nels: 128; time calibration: 58 ps/channel; counts per
spectrum: 2×106 ; number of spectra in a series: 10].

The results obtained by applying to this spectra
of different codes are presented in Table. All codes
were able to resolve four components in spectra, but
the MELT results show a correlation between two
longest components. In this respect both Posgauss
and Q fit performs better.As a whole Q fit gives es-
timators with the smallest bias but with significantly
larger errors. The scatter in the results of Q fit may
be due to the high resolution capability of the pro-
posed method.

In Fig.2 for a particular data set from series B the
mean lifetime for all exponentials satisfying the mas-
ter conditions is shown. It can be seen that the whole
range of the exponential model order in Fig.2 can be
subdivided into three intervals: (1) 8 ≤ p ≤ 15; (2)
32 ≤ p ≤ 35; (3) 42 ≤ p ≤ 57 where the parame-
ters of pure decreasing exponentials remain virtually
constant. These intervals are separated by transition
ranges.
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Mean values for lifetimes τi and weights Ii, i = (1, ..., 4) found by MELT , Posgauss [6] and Q fit for
simulated spectra, from the series B . The errors represent the standard deviations from the mean values.

Analysis method t1(dt1),ps
I1(dI1), %

t2(dt2),ps
I2(dI2),%

t3(dt3),ps
I3(dI3),%

t4(dt4),ps
I4(dI4),%

Simulation 100
25

250
25

600
25

1000
25

MELT [6] 103.1 (0.6)
25.27 (0.35)

254.9 (4.3)
23.94 (0.36)

559.3 (14.1)
20.92 (0.80)

947.8 (6.4)
29.87 (0.94)

Posgauss [6] 100.6 (0.7)
25.31 (0.40)

254.9 (4.8)
25.34 (0.27)

618.4 (13.7)
25.89 (0.57)

1012.1 (8.1)
23.47 (1.02)

Q fit 100.2 (1.7)
24.81 (1.32)

245.9 (14.2)
24.59 (0.78)

592.0 (28.0)
25.34 (0.93)

998.9 (12.9)
25.24 (1.78)

The first of them corresponds to a three com-
ponent model, the second to the four components
with biased estimations and the third to the four
component model with unbiased estimations. So, the
more exactly the noise in the spectrum is described
the more reliable is the spectrum decomposition.

Fig.2. Mean lifetime of the exponential model terms
satisfying the master conditions for one particular
data set from series B

4. CONCLUSION

A new approach to analyze the positron lifetime
spectra was proposed. This approach is based on a
non-linear least square method but differs from the
existing ones in that it uses fast algorithms and a
more flexible basic set. This allows to use a model
function with a large number of components and thus
to describe readily and with reasonable accuracy both
useful and noise parts of the spectrum.

These parts can further be separated and this sep-
aration is equivalent to some regularization proce-
dure. It should be stressed that in contrast to the
common practice we did not use any low pass fil-
ter. Therefore, our method is free from the undesired
consequences of such filtering. As a result a regu-
larized smooth solution gives unbiased estimations of
parameters of the useful signal with a high resolution
capability.
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ИНТЕРПРЕТАЦИЯ СПЕКТРА ВРЕМЕНИ ЖИЗНИ ПОЗИТРОНОВ
НА ОСНОВЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ ПРОНИ

А.И.Кульментьев

Разработан метод численного анализа спектров времени жизни позитронов. Предложен новый подход
определения числа компонент в спектре и сформулирована регуляризационная процедура решения
обратной задачи оценки характеристик полезных компонент. Результаты, полученные на модельных
спектрах, демонстрируют высокую разрешающую способность предложенного метода.

IНТЕРПРЕТАЦIЯ СПЕКТРIВ ЧАСУ ЖИТТЯ ПОЗИТРОНIВ
НА ОСНОВI МЕТОДУ НАЙМЕНШИХ КВАДРАТIВ ПРОНI

О.I.Кульментьєв

Розроблено метод чисельного аналiзу спектрiв часу життя позитронiв. Запропоновано новий пiдхiд до
визначення числа компонент у спектрi i сформульована регуляризацiйна процедура вирiшення зворот-
ної задачi оцiнки характеристик корисних компонент. Результати, якi отриманнi на модельних спек-
трах, демонструють високу роздiльну здатнiсть запропонованого методу.
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