ЭПИТАКСИАЛЬНЫЙ РОСТ ПЛЁНОК ТРОЙНОЙ СИСТЕМЫ Cu-In-Se

С.Н. Григоров, А.В. Таран Национальный технический университет «Харьковский политехнический институт», Харьков, Украина E-mail: ataran@kpi.kharkov.ua

На поверхности (001) кристаллов KCl с подслоем PbS при температуре подложки 400 °C выращены эпитаксиальные пленки β -CIS. В пленках обнаружены зоны существования β -CIS и β -+ γ -CIS, соответствующих псевдобинарной диаграмме состояния Cu₂Se–In₂Se₃. В кристалликах β -CIS установлены микродвойники по плоскостям (112) и двумерные дефекты по – (100). Двумерные дефекты образуются в результате сдвига в плоскости (001) на вектор типа R=½[110]. Это приводит к образованию антифазных границ по плоскостям (100) и (010) и дефектов упаковки по (001).

введение

Тройные полупроводниковые соединения на базе CuInSe₂ (α-CIS) представляют большой интерес для производства солнечных элементов, а также других оптоэлектронных устройств [1,2]. Их применение в данных областях предъявляет особые требования к качеству структуры получаемых тройных соединений. Обычно синтез крупнокристаллических полупроводниковых пленок CuInSe₂ осуществляют при температуре достаточно высокой подложки (600...650 °С). В последние годы в связи с созданием солнечных элементов на гибких полиамидных подложках возникла необходимость в разработке методов изготовления пленок α-CIS с совершенной структурой при сравнительно низких температурах подложки (< 450 °C).

Известно, что существуют только две равновесные кристаллические модификации CuInSe2: фаза халькопирита (α-CIS), существующая при низкой температуре, и высокотемпературная фаза сфалерита (δ-CIS) [3]. При отклонении состава соединения CuInSe₂ от стехиометрического в направлении увеличения концентрации индия образуется фаза, именуемая β-CIS. Она имеет широкую область растворимости и характеризуется такой же халькопиритной структурой (практически с такими же параметрами решетки), что и α-CIS. Ее отличительной особенностью является наличие упорядоченных вакансий в подрешетке меди. До сих пор нет единого мнения о существовании стабильных фаз и их кристаллической структуре в интервале концентраций, соответствующем β-фазе. Высказываются предположения о наличии либо отдельных нестехиометрических фаз с широкой областью растворимости, либо об образовании пакетов из упорядоченных фаз с относительно узким интервалом стабильности. К данному интервалу концентраций относят шесть соединений с химическим составом: Cu₂In₄Se₇, Cu₈In₁₈Se₃₂, Cu₇In₉Se₃₂, Cu₁₄In_{16,7}Se₃₂, Cu₃In₅Se₉ и CuIn₃Se₅. Обычно, именно соединение CuIn₃Se₅ с кристаллической структурой, принадлежащей группе симметрии *I*4 или *I*42m, соотносят с β-CIS. Это соединение было впервые обнаружено методом рентгеновской дифракции в [4]. Позднее в [5] для фазы CuIn₃Se₅ было предложено название Р-

халькопирит, которое исходило из названия группы симметрии – P42c. Методом просвечивающей электронной микроскопии была установлена фаза CuIn₃Se₅ с пространственной группой I4, которая получила название OVC (ordered vacancy compound) – фаза с упорядоченными вакансиями [6]. В [7] фаза CuIn₃Se₅ была получена путём внедрения упорядоченных точечных дефектов в структуру халькопирита CuInSe₂ и была названа «дефектный халькопирит».

В процессе роста плёнки возможно возникновение различных типов нестехиометрических упорядоченных структур. Например, в плёнках CuInSe₂ с избытком индия, выращенных на поверхности (001) GaAs, обнаружено сопряжение доменов фазы α -CIS с доменами метастабильной фазы со структурой типа CuAu [8]. Из вышеизложенного очевидно, что такие различные данные требуют дальнейших исследований механизма фазообразвания в системе Cu–In–Se.

Целью настоящей работы явилось приготовление пленок различного состава тройной системы Cu-In-Se при температуре подложки 400 °C, исследование возможности эпитаксиального роста этих пленок и изучение их фазового состава и структуры.

МЕТОДИКА ЭКСПЕРИМЕНТА

В настоящей работе пленки Cu–In–Se препарировались в стандартной вакуумной установке ВУП-5 при разрежении 5·10⁻³ Па. Трёхкомпонентные плёнки Cu–In–Se переменного состава изготовлялись путем совместного осаждения из двух источников селенида индия и меди на сколы (001) кристаллов KCl, нагретых до 400 °C. Порошок In₂Se₃ чистотой 99,999 % испарялся из алундового тигля, медь чистотой 99,999 % испарялась из молибденовой лодочки. Кристаллы KCl размещались на плоской протяженной подложке на разном расстоянии от источников меди и селенида индия. Это обеспечивало вариацию состава пленок вдоль подложки.

Для выращивания эпитаксиальных пленок Cu-In-Se при температуре 400 °C на поверхность кристаллов KCl предварительно конденсировался тонкий (толщиной 2...3 нм) монокристаллический слой PbS. Сульфид свинца растет на поверхности KCl в эпитаксиальной ориентации, и пленка PbS формируется сплошной уже при очень малой толщине, меньшей 5 нм. При этом несоответствие решёток CuInSe₂ и PbS составляет всего 2,8 %. Поэтому можно ожидать, что пленки CuInSe₂, выращиваемые на поверхности PbS, будут иметь более совершенную структуру, чем те, что растут непосредственно на поверхности КСІ. Структура пленок исследовалась на просвечивающем электронном микроскопе ПЭМ-125К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проведено электронно-микроскопическое исследование образцов разного элементного состава. Установлено, что практически были выращены пленки только двух типов. На поверхности кристаллов, расположенных ближе к испарителю меди, сформировалась пленка с тетрагональной решеткой (рис. 1), а на поверхности кристаллов, расположенных ближе к источнику In₂Se₃, сформировалась двухфазная пленка из кристалликов с тетрагональной и гексагональной решетками (рис. 2).

Рис. 1. Микроэлектронограмма от пленки Cu-In-Se, выращенной на поверхности кристалла KCl с подслоем PbS при 400 °C, расположенного над источником меди

Тетрагональную решетку имеют фазы α -CIS (CuInSe₂) и β -CIS (CuIn₃Se₅), а гексагональную решетку – фаза γ -CIS (CuIn₅Se₈).

Остановимся подробнее на анализе микродифракционной картины от пленки Cu–In–Se с тетрагональной решеткой (см. рис. 1). На ней помимо сильных рефлексов типа (220) и (400), принадлежащих структуре халькопирита (α -CIS), наблюдаются рефлексы типа (002) и (110). В идеальной, стехиометрической структуре халькопирита CuInSe₂ отражения типа (002) и (110) запрещены структурным фактором.

В [9,10] показано, что такие отражения разрешены для фазы β-CIS с упорядоченными вакансиями в подрешетке меди.

Геометрически правильный мотив в расположении основных рефлексов (200), (220) и (400) β -CIS и PbS указывает на то, что имеет место эпитаксиальный рост β -CIS на поверхности (001) PbS. Кристаллики β -CIS растут на поверхности (001) PbS в двух эквивалентных эпитаксиальных позициях: (001), [100] β -CIS || (001), [100] и [010] PbS. В этот мотив органично вписываются рефлексы типа (101) β -CIS, что указывает на наличие в пленке кристалликов

еще двух эквивалентных эпитаксиальных ориентаций: (010), [001] β -CIS || (001), [100] и [010] PbS. Если принимать во внимание только геометрический аспект сопряжения кристаллических решеток β -CIS и PbS, то все указанные ориентации являются эквивалентными, так как период тетрагональной решетки β -CIS вдоль оси *с* в два раза больше периода вдоль оси *а*. Поэтому отражения (200) и (004), (400) и (008) на микроэлектронограмме (см. рис. 1) совпадают.

Рис. 2. Микроэлектронограмма от пленки Cu-In-Se на KCl с подслоем PbS от кристаллов, расположенных над источником In₂Se₃

На микродифракционной картине от пленки с большим содержанием индия (см. рис. 2) в дополнение к рефлексам от кристалликов β -CIS в эпитаксиальных позициях появляются отражения типа (112) β -CIS, что свидетельствует об ухудшении эпитаксиального роста, и дифракционные кольца (100) и (110), соответствующие фазе γ -CIS с гексагональной решеткой.

Кристаллики γ-CIS растут на поверхности PbS в ориентации (001), [001] γ-CIS || (001), [001] PbS.

Отличительной особенностью микроэлектронограммы (см. рис. 1) является наличие тяжей. Так, у рефлексов типа (200) наблюдаются тяжи, вытянутые вдоль направления [110] и $[1\overline{1}0]$. На концах тяжей располагаются слабые рефлексы, которые не принадлежат сечению обратной решетки (001). Подобные группы рефлексов, соединенных тяжами, наблюдаются также вблизи отражений (220) и (400). Объяснить происхождение таких тяжей и рефлексов можно следующим образом. Известно, что типичным дефектом тетрагональной кристаллической решетки β-CIS являются двойники по плоскостям (112). Узлы обратной решетки для этих двойников не попадают в сечение (001) обратной решетки матрицы. Но они образуют узловые плоскости, параллельные плоскости (001), причем, расстояние между этими плоскостями в три раза меньше, чем расстояние между узловыми плоскостями обратной решетки матрицы. Поэтому рефлексы от двойников и рефлексы двойной дифракции, которые расположены в плоскостях, соседних с плоскостью (001), проходящей через нулевой узел, могут появиться на дифракционной картине совместно с рефлексами от матрицы вследствие небольшого изгиба пленки. Такая ситуация наблюдалась в [11] на дифракционных картинах от монокристаллических пленок золота. Появлению рефлексов от двойников в пленке β-CIS способствует также то, что она состоит из множества мелких кристалликов, находящихся в одной эпитаксиальной ориентации. В каждом кристаллике реализуются свои дифракционные условия, а в целом возникает дифракционная картина с полным набором рефлексов от двойников и экстрарефлексов двойной дифракции.

Известно, что если кристаллики в двойниковой позиции очень тонкие, то на электронограмме они дадут длинные диффузные тяжи, перпендикулярные линии пересечения плоскости двойникования и плоскости (001). Именно такие тяжи и наблюдаются в области рефлексов (200), (220) и (400) на микро-электронограмме (см. рис. 1). Следовательно, дифракционная картина от эпитаксиальных кристалликов β -CIS ориентации (001) указывает на то, что эти кристаллики содержат большое количество пластинок микродвойников по плоскостям (112).

Кристаллики β-CIS других ориентаций, присутствующие в пленках Cu-In-Se, также содержат микродвойники.

На рис. 3 представлен темнопольный снимок в свете рефлекса (200) и примыкающей к нему группы рефлексов.

Рис. 3. Темнопольный снимок в свете рефлексов $(1\overline{1}2), (1\overline{1}\overline{2}) u (200)$ от кристалликов β -CIS ориентации (110) и (001) с двойниковыми прослойками

В эту группу входят рефлексы от двойников к кристалликам ориентации (001) и рефлексы $(1\overline{1}2)$ и $(1\overline{1}\overline{2})$ от кристалликов β-CIS ориентации (110), развернутых один относительно другого на 90°.

На снимке пластинки двойников в кристалликах ориентации (001) имеют трапециевидную форму (располагаются в плоскостях (112), которые наклонены к электронному пучку), а пластинки двойников в кристалликах ориентации (110) – форму иголочек (параллельно электронному пучку). Большое количество микродвойников роста в структуре пленки может указывать на то, что однофазные пленки β-CIS, которые формируются при увеличении концентрации индия в пленке, наследуют структуру двухфазной пленки α -CIS+ β -CIS, в которой ультратонкие слои α -CIS с помощью двойниковых границ когерентно сопрягаются с ультратонкими кристалликами β -CIS.

На микроэлектронограмме (см. рис. 1) у рефлексов типа (110) наблюдаются крестообразные тяжи, которые идут вдоль направлений [100] и [010] кристаллической решетки β-CIS. Кроме этого, рефлексы (101) дают тяжи вдоль направления [001].

Отметим, что тяжи вдоль [100] и [010] присутствуют только у рефлексов, разрешенных для кристаллической структуры β-CIS с упорядоченными вакансиями в подрешетке меди, но запрещенных для α-CIS с такой же кристаллической структурой, но без вакансий. Можно предположить, что они происходят от двухмерных дефектов, принадлежащих катионной подрешетке из атомов Cu и In, но не изменяющих подрешетку из атомов Se. Природу таких двумерных дефектов можно объяснить сдвигом в плоскости (001) β-CIS с тетрагональной решеткой на вектор типа R=1/2[110], который сохраняет координаты атомов селенового остова тетрагональной элементарной ячейки, но переводит атомы меди в положение атомов индия. Это приводит к образованию антифазных границ по плоскостям (100) и (010), которые проявляют себя на электронограмме в виде размерного эффекта дифракции – длинных тяжей вдоль направлений [100] и [010]. На электронно-микроскопическом снимке множество доменов, разделенных антифазными границами, могут создавать полосчатый контраст вдоль направлений [100] и [010]. Пример такого контраста можно наблюдать в центральной части темнопольного электронно-микроскопического снимка на рис. 4. Темнопольный снимок получен в свете рефлекса типа (110) ориентации (001) и рефлексов типа (101) от кристалликов ориентации (010), развернутых на 90° вокруг друг друга.

Тяжи вдоль направления [001] у рефлексов типа (101) указывают на наличие плоских дефектов, перпендикулярных оси *с*. Это могут быть дефекты упаковки с $R=\frac{1}{2}[110]$. В протяженных областях с ориентацией (010), развёрнутых на 90° одна относительно другой, наблюдаются плоские дефекты, перпендикулярные оси [001] своей области (см. рис. 4).

выводы

Методом одновременного термического испарения в вакууме меди и селенида индия In₂Se₃ из двух источников и конденсации их на поверхности (001) кристаллов KCl с подслоем PbS приготовлены пленки тройного соединения Cu-In-Se переменного состава. В пленках обнаружены зоны существования β -CIS и β - + γ -CIS, соответствующих псевдобинарной диаграмме состояния Cu₂Se–In₂Se₃.

На поверхности (001) кристаллов KCl с подслоем PbS при температуре подложки 400 °C выращены эпитаксиальные пленки β -CIS, состоящие из кристалликов ориентаций: (001), [100] β -CIS || (001), [100] и [010] PbS и (010), [001] β -CIS || (001), [100] и [010] PbS.

В кристалликах β-CIS установлено существование пластинок микродвойников по плоскостям (112) тетрагональной решетки.

Выявлена природа двумерных дефектов, которую можно объяснить сдвигом в плоскости (001) β -CIS с тетрагональной решеткой на вектор типа $R=\frac{1}{2}[110]$, который сохраняет координаты атомов селенового остова тетрагональной элементарной ячейки, но переводит атомы меди в положение атомов индия. Это приводит к образованию антифазных границ по плоскостям (100) и (010) и дефектов упаковки по плоскостям (001).

ЛИТЕРАТУРА

- A. Rockett, F. Abou-Elfotouh //Thin Solid films. 1994, v.237, p.1-11.
- H.W. Schock et al. //J. Appl. Surf. Sc. 1996, v.92, p.606-616.
- 3. T. Gödecke, T. Haalboom // Zeitschrift fur Metallcunde. 2000, v. 91, p.622.
- L.S. Palatnik and E.I. Rogacheva // Neorgan. Mat. 1966, v.2, p. 478.
- W. Hönle, G. Kühn, U.-C. Boehnke // Crystal Research and Technology. 1988, v. 23, p.1347.
- J. Nelson, G.S. Horner, K. Sinha, and M.H. Bode // Appl. Phys.Lett. 1994, v.64 (26), p. 3600.
- T. Negami, N. Kohara, M. Nishitani, and T. Wada // Jpn. J. Appl. Phys. 1994, v. 33, p.1251.
- 8. O. Hellman et al. // J. Mater. Res. 1996, v. 11, p.6.
- M. Hornung et al. // J. of Crystal Growth. 1995, v. 154, p. 315
- 10. U.C. Boehnke, G. Kuhn // J. of Matherials Science. 1987, v. 22, p. 1635,
- 11. P.B. Hirsch et al. // Electron microscopy of thin crystals. London, Butterworks, 1965.

Статья поступила в редакцию 11.02.2011 г.

ЕПІТАКСІЙНИЙ ЗРІСТ ПЛІВОК ПОТРІЙНОЇ СИСТЕМИ Cu-In-Se

С.Н. Григоров, А.В. Таран

На поверхні (001) кристалів КСІ з підшаром PbS при температурі підкладки 400 °С вирощені епітаксійні плівки β -CIS. У плівках виявлені зони існування β -CIS, й β - + γ -CIS, що відповідають псевдобінарної діаграмі стану Cu₂Se–In₂Se₃. У кристаликах β -CIS встановлені мікродвійники по площинах (112) й двовимірні дефекти по (100). Двовимірні дефекти утворюються в результаті зрушення в площині (001) на вектор типу R=1/2[110]. Це приводить до утворення антифазних границь по площинах (100) й (010) та дефектів упакування по площинах (001).

EPITAXIAL GROWTH OF TERNARY Cu-In-Se FILM SYSTEM

S.N. Grigorov, A.V. Taran

 β -CIS epitaxial films were grown on (001) KCl surface with PbS sublayer at 400 °C. There were revealed the β-CIS and β- + γ-CIS zones, corresponding to Cu₂Se–In₂Se₃ pseudo-binary phase diagram. β-CIS crystallites revealed microtwins on (112) planes and two-dimensional defects on (100). The nature of such two-dimensional defects can be explained as a shift in the (001) β-CIS plane by a vector R = 1/2[110]. As a result, an antiphase boundary appears along the (100) and (010) planes and stacking faults along (001) planes.