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Motion of a relativistic beam of electrons through an undulator is considered, with the influence of incoherent 

fields its spontaneous radiation on this motion being taken into aсcount. Interaction of electrons with these fields is 
shown to result in the increase of electron-momentum spread in the beam. The conditions of high-gain self-ampli-
fied spontaneous emission process realization in the ultrashort-wavelength FELs are discussed
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1. INTRODUCTION
As it is known, the mode of high-gain self-amplified 

spontaneous emission (SASE) by a relativistic beam of 
electrons, moving in undulator, allows to produce inten-
sive coherent short-wavelength radiation in a free-elec-
tron lasers (FEL) (see, for example, [1-3]). Thus, in ini-
tially uniform beam collective interaction of  electrons 
with the field of radiation leads to a grouping of elec-
trons in coherently radiating bunches and to the growth 
of intensity of electromagnetic radiation. For realization 
of such a mode of amplification beams of ultrarelativis-
tic electrons are necessary with sufficiently high aver-
age  density  of  electrons  and  small  energy  spread  at 
which electrons of a beam can be grouped by a total 
field of their spontaneous radiation in coherently radiat-
ing bunches.

However, when beam moves in undulator there can 
be an increase in electrons-momentum spread due to the 
influence of their incoherent fields of spontaneous radi-
ation on motion of electrons [4]. This effect is not con-
nected with the development of collective instability at 
amplification by an electron beam of its  own sponta-
neous undulator radiation. It is determined by pairwise 
interaction of individual electrons of beam in undulator 
at a stage of spontaneous radiation. The spread of elec-
trons on a longitudinal momentum has been found in [4] 
in a limiting case of unbounded electron beam by ra-
dius. For determination of conditions of high-gain self-
amplification spontaneous emission mode realization in 
ultrashort-wavelength FELs it is necessary to generalize 
such a theory on finite values of beam radius. In the giv-
en work results of theoretical investigation of such mod-
el  -  the  limited  by  radius  beam of  pointed  electrons, 
moving in helical undulator are presented. 

2. MOTION AND FILD OF A TEST PARTICLE
Let's  consider  transverse  spatial  periodic  helical 

magnetic field of undulator Hu 
( ) ( )[ ]zkzkH uyuxu sincos0 eeH += , (1)

where  uuk λπ2= ,  Н0 и λu are the amplitude and the 
period of the magnetic field,  ex,  ey are the unit vectors 
along axes OX and OY the Cartesian system of coordi-
nates. 

Let the cylindrical beam of relativistic electrons with 
radius rb, the energy 0

2γmc  of electron and uniform av-
erage density n0 move in a positive direction of an axis 

z, where γ0s is Lorentz factor. The trajectory of individu-
al  electron  (for  example,  s-th)  in  undulator  can  be 
present in the form 

( ) ( )[ ] ssuuysuuxss zzkrzkrrr +−+−= 1cossin0 ee ,  (2)
where ( ) ( )tttz ssss ∆+−= 00v , r0s={x0s, y0s, 0} and v0s are 
a radius-vector and longitudinal velocity of s-th electron 
at  initial  moment of  time t0s,  when electron crosses a 
plane z=0, ∆s is displacement of a trajectory of electron 
in  undulator  relative  to  its  equilibrium  trajectory, 

( )ssuu kcKr 00v γ= ,  ( )ukmcHeK 2
0= ,  е,  m are  the 

charge and mass of electron, c-speed of light. 
Considering only a magnetic component of Lorentz's 

force, the equation of longitudinal motion of individual 
(test) electron in the field (1) and the fields of sponta-
neous undulator  radiation  of  others  can be  written as 
follows: 
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( ) ( ) ( )[ ] zik
sxsy

s
z

ueqtriHqtrHeF 00 ;,;,Re += ⊥β , (4)
where pi is an momentum of i-th electron; Fz

(s)(x,t;xs) is 
a longitudinal component of force of pair electron inter-
action via the electromagnetic field of one of them (s-th 
electron); xs(t)={rs(t),  ps(t)} is a set of coordinates and 
an momentum of s-th electron, sK 0γβ =⊥ . 

In approximation of a small value of undulator pa-
rameter  К2<<1 and  γ0>>1,  expression  for  field H de-
rived from formulas for a field of a charge, moving with 
acceleration (see, for example, [5]) takes the form 
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( ) ( ) 2122
0 ss zttc ρ+>− , (6)

where ( ) ssttvzz ∆−−−= 00δ , ( )*0
2
0 Rzku βδγψ += , 

( ) ( )[ ] 2122
sss yyxx −+−=ρ , ( )[ ] 212

0
22

* γρδ szR += , 

ukk 2
000 γβ= . 

3. ELECTRON-MOMENTUM SPREAD 
The  electromagnetic  field  produced  by  a  uniform 

beam оf electrons is random. According to the equation 
(3)  the  random  force  will  act  on  electrons.  Thus, 
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changes in time of the average square value of a longitu-
dinal electron-momentum can be presented in the form 

( ) ( )[ ] ( )[ ]∫ ′′′=∆
t

t
izizzi

i

tdttxFttxFp
dt
d

0

,,22 δδ , (7)

where zzz ppp −=∆ ,  zzz FFF −=δ , brackets ...  
denote ensemble average. 

Considering change of a momentum on a time inter-
val smaller than time, for which motion of an electron 
will essentially change. Then in subintegral expression 
of the Eq. (7) it is possible to replace xi(t) with unper-
turbed coordinates and momentum of electron in undu-
lator ( )

0
0

=∆
= ss xx . Average value of subintegral expres-

sion in the right-hand side of the Eq. (7) can be found 
by means of distribution function in phase space of co-
ordinates and momentum of all electrons at initial mo-
ment of time. Neglecting correlations between electrons, 
and assuming also, that electrons are monoenergetic on 
entrance in undulator the equation (7) can be written in 
the form: 
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where ( )ossss tyxq 0000 v,,= . 
In the right-hand side of this equation the region of 

integration on initial coordinates qos, according to (6), is 
defined by conditions 

( )*0
2
0)( Rztz sis βδγ +≥′ , (9)

( ) bsoss ryxr ≤+≡⊥
212

0
2 .

Expression in the right-hand side of Eq.(8) depends 
on force of pairwise interaction of electrons. When ther-
mal  motion of  beam electrons  is  neglected  this  force 
does not depend on time, but on the difference of initial 
coordinates of electrons-radiators and test electron. 

Let's consider a test particle, moving near the beam 
axis: bi rr < <⊥ . Since force of interaction of electron-ra-
diators and test electron is axially symmetric, let’s sub-
stitute variables x0s, y0s, t0s for  ξ and  θ, defined by for-
mulas
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where ( ) ( )[ ] 212
00

2
00 isissi yyxx −+−=ρ , 

( )issi ttz 000v −=δ . 
Taking into account  the  fields  of  only those elec-

trons, which move behind considered (test) electron (z≥
zs(t)) the following expression for the rate of change of 
the average square-value deviation from the mean value 
of a longitudinal momentum of test electron is obtained 
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where ( )ξβθψ 0cos1 += . 
Here we have passed to an independent variable z a 

distance from an undulator entrance.
The values of the upper limit of integration ξm(θ) are 

found from expressions (9). Hence, at z′<zr from (9) it 
follows for ξm(θ) 
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0
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+

′
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m , (11)

where br rz 00βγ= .
At z′>zr the limit of integration is equal to 
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At  z<zr,  integrating  the  right-hand  side  of  the 
Eq.(10) in view of (11), is obtained [4] 

( ) 2

3

0
2442 K

16
5

c
znkep uz

π=∆ . (13)

At greater distances from the undulator entrance at 
z>>zr, integrating (10) in view of (12), the following es-
timation  of  square  value  of  the  longitudinal  electron-
momentum spread is obtained 

( ) ruz z
c
znkep 2

2

0
2442 K3π=∆ . (14)

4. DISCUSSION
Formulas (13) and (14) describe dependence of lon-

gitudinal electron-momentum spread from the distance 
passed in undulator and from parameters of an electron 
beam and  undulator.  According  to  (13)  and  (14)  the 
root-mean-square value of  a  longitudinal  electron-mo-
mentum may be written as follows: 

( )[ ] effRzz pp N212 ∆=∆ , (15)

where R
z

Rz F
v
zp
0

≡∆ , ( )( ) 3
0

2
00032 βγHrFR −=  is the 

force of radiative deceleration of electron, r0=e2/mc2 is 
the classical electron radius, 

ueff zNN λ
π2
3=  at  z<zr and  ureff zNN λ

2
9=  at 

z>>zr, 4
0

3
0 8γλ unN = . 

One can see  from (13)-(15),  that  the  electron-mo-
mentum spread increases in an electron beam moving 
through an undulator. It follows from the formula (15), 
that the root-mean-square value of a longitudinal elec-
tron-momentum is proportional to 23z  at z<zr [4]. Such 
a dependence of the spread from z is connected with the 
increase in a deviation of electron-momentum from the 
average value under the action of forces of pairwise in-
teraction, that are independent on time, on the one hand, 
and with the increase in the number of electrons (Neff) in 
the region of whose fields the test electron is located on 
other. Thus such an increase of  Neff occurs through the 
increase in volume of this region. 

The spread on a longitudinal electron-momentum in-
creases mainly due to the action of forces of pairwise in-
teraction of electrons at z>zr, since the number of elec-
trons effectively interacting with the test electron practi-
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cally does not increase because of the finite cross-sec-
tion of a beam. 

In the formula (15) we have expressed momentum 
spread  through  the  average  losses  of  a  momentum 
caused by radiation deceleration individual electron, and 
N - number of electrons in the cube characteristic length 
on edge which is equal to the radiation wavelength in 
the system of a beam rest frame. Such representation of 
spread shows, that root-mean-square momentum spread 
grows more quickly at N>1, than the change of momen-
tum caused by radiative deceleration. It is necessary to 
note, that the collective radiative instability of an elec-
tron  beam  in  an  undulator  for  the  self-amplification 
mode of FEL is only realized when the strong inequality 
N>>1 is satisfied [6]. 

The increase in spread of electron-momentum con-
sidered  above can  be  neglected,  if  at  a  characteristic 
length  of  ρλ usatz =  where  exponential  growth  of 
SASE saturates,  the  momentum spread  will  be  small 
enough:  ρ<∆ zz pp 0 ,  where  ρ is  the  dimensionless 
spatial growth rate [1, 2, 6, 7] (for example, in one-di-
mensional  model  ( ) 0

312
00

2 16 γπλ=ρ urnK ).  Hence, 
condition 
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is necessary to fulfill  for realization of high-gain self-
amplified spontaneous emission process. 

Here, zsat>>zr is considered for parameters of elec-
tron beams and undulators in  the range  of  ultrashort-
wavelenght FELs. 
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ПОРОГ УСИЛЕНИЯ СПОНТАННОГО ИЗЛУЧЕНИЯ РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРО-
НОВ В ОНДУЛЯТОРЕ

В.В. Огнивенко
Рассмотрено движение релятивистского пучка электронов в ондуляторе с учетом влияния на это движе-

ние некогерентных полей их спонтанного излучения. Показано, что взаимодействие электронов с этими по-
лями приводит к увеличению разброса электронов по импульсам в пучке. Обсуждаются условия реализации 
процесса  интенсивного  самопроизвольного  усиления  спонтанного  излучения  в  ультракоротковолновых 
ЛСЭ. 

ПОРІГ ПІДСИЛЕННЯ СПОНТАННОГО ВИПРОМІНЮВАННЯ РЕЛЯТИВІСТСЬКОГО ПУЧКА 
ЕЛЕКТРОНІВ В ОНДУЛЯТОРІ

В.В. Огнівенко
Розглянуто  рух  релятивістського  пучка  електронів  в  ондуляторі  з  урахуванням  впливу  на  цей  рух 

некогерентних  полів  їхнього  спонтанного  випромінювання.  Показано,  що  взаємодія  електронів  із  цими 
полями  призводить  до  збільшення  розкиду  електронів  по  імпульсах  у  пучку.  Обговорюються  умови 
реалізації  процесу  інтенсивного  самочинного  підсилення  спонтанного  випромінювання  в 
ультракороткохвильових ЛВЕ. 
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