ТЕНЗОРНАЯ ФУНКЦИЯ ГРИНА ГЕКСАГОНАЛЬНЫХ ПЕРЕХОДНЫХ МЕТАЛЛОВ

П.Н. Остапчук

Институт электрофизики и радиационных технологий НАН Украины, Харьков, Украина E-mail: ostapchuk@kipt.kharkov.ua

Методом И.М. Лифшица и Л.Н. Розенцвейга получены выражения для компонент тензорной функции Грина для основного уравнения теории упругости в случае гексагональных 4d и 5d переходных металлов. В отличие от металлов кубической сингонии эти выражения являются точными. Показан предельный переход к изотропному приближению.

PACS 62.20.Dc; 62.20.Fe

Как известно, концепция упругого изотропного кристалла является идеализацией. Все реальные кристаллы анизотропны. Тем не менее, изотропное приближение широко используется. Этому имеется две вполне обоснованные причины. Первая – это математические сложности И чрезвычайная громоздкость вычислений, возникающие при учете анизотропии. Вторая обусловлена тем, что ошибки, изотропным приближением, связанные с оказываются во многих случаях того же порядка или экспериментальных даже меньше ошибок наблюдений. И все же учет анизотропии важен как в теории, так и на практике.

В континуальной теории упругости ряд задач решается с помощью тензорной функции Грина. Если известна реакция неограниченной упругой на сосредоточенную среды силу, то интегрированием можно найти деформацию этой среды, вызванную любым распределением сил. В изотропном приближении тензорная функция Грина давно известна [1]. В случае неограниченной упругоанизотропной среды регулярный метод ее построения был предложен И.М. Лифшицем и Л.Н. Розенцвейгом в работе [2]. Было показано, что задача, в принципе, решается с помощью теории вычетов и подразумевает нахождение корней некоторого алгебраического уравнения шестой степени. Коэффициенты в этом уравнении вещественны, и, значит, корни являются попарно сопряженными, т.е. сумма вычетов содержит три слагаемых. Однако расположение полюсов в нужной полуплоскости комплексной переменной определяется конкретными значениями упругих модулей кристалла. Это обстоятельство не позволяет решить задачу в общем виде в случае кристалла кубической системы. Требуется условие слабой анизотропии. В данном сообщении методом [2] получен тензор Грина переходных металлов гексагональной сингонии. Для всех них искомые полюсы лежат на мнимой оси, поэтому результат записывается в общем виде.

Идея метода [2] состоит в следующем. Как известно, смещение $\mathbf{u}(\mathbf{r})$, возникающее в среде под действием приложенной в начале координат силы \mathbf{f} , удовлетворяет системе уравнений:

$$C_{iklm} \frac{\partial^2 u_i(\mathbf{r})}{\partial x_k \partial x_m} = -\delta(\mathbf{r}) \mathbf{f}_i; \qquad u_i(\infty) \to 0, \quad (1)$$

где C_{iklm} – тензор модулей упругости анизотропной среды. Искомый тензор Грина определяется соотношением

$$u_l(\mathbf{r}) = G_{ln}(\mathbf{r}) \mathbf{f}_n, \qquad (2)$$

т.е. является решением системы

$$C_{iklm} \frac{\partial^2 G_{ln}(\mathbf{r})}{\partial x_k \partial x_m} = -\delta(\mathbf{r})\delta_{in} \,. \tag{3}$$

Поэтому, если найдем $u_i(\mathbf{r})$ и в нем заменим \mathbf{f}_i

на δ_{in} , получим компоненту G_{ln} тензора Грина. Таким образом, задача сводится к отысканию решения (1). Следуя [2], его будем искать в виде интеграла Фурье, используя соответствующее разложение δ -функции:

$$u_{l}(\mathbf{r}) = \int V_{l}(\xi \xi \exp(i\mathbf{r}\xi \xi d\xi \xi;$$

$$\delta(\mathbf{r}) = \frac{1}{(2\pi)^{3}} \int \exp(i\mathbf{r}\xi \xi d\xi \xi;$$
 (4)

Подстановка (4) в (1) дает для амплитуд Фурье $V_i(\mathbf{\xi})$ систему алгебраических уравнений:

$$C_{iklm} \mathbf{V}_l (\boldsymbol{\xi} \boldsymbol{\xi}_k \boldsymbol{\xi}_m = \frac{1}{(2\pi)^3} \mathbf{f}_i.$$
 (5)

Для гексагонального кристалла тензор модулей упругости в кристаллографической системе координат имеет вид:

$$C_{iklm} = a\delta_{ik}\delta_{lm} + b(\delta_{il}\delta_{km} + \delta_{im}\delta_{kl}) + \gamma\delta_{i3}\delta_{k3}\delta_{l3}\delta_{m3} + \chi \left(\delta_{i3}\delta_{k3}\delta_{lm} + \delta_{ik}\delta_{l3}\delta_{m3}\right) + \rho \left(\delta_{im}\delta_{k3}\delta_{l3} + \delta_{il}\delta_{k3}\delta_{m3} + \delta_{kl}\delta_{i3}\delta_{m3} + \delta_{km}\delta_{i3}\delta_{m3}\right),$$
(6)

поэтому вместо (5) с учетом (6) имеем:

$$(b\xi^{2} + \rho\xi_{3}^{2})V_{i}(\xi\xi + + \left[(\chi + \rho)\xi_{i}\xi_{3} + \delta_{i3}(\chi\xi_{3}^{2} + \rho\xi^{2})\right]V_{3}(\xi) + (7) + \left[(a+b)\xi_{i} + \delta_{i3}(\chi + \rho)\xi_{3}\right](\xi V) = \frac{1}{(2\pi)^{3}}f_{i}.$$

Умножая (7) на ξ_i и суммируя по «i», получаем уравнение для скалярного произведения (**\xiV**):

+
$$[(\chi + 2\rho) \xi^{2} + \gamma \xi_{3}^{2}] \xi_{3} V_{3}(\xi) = \frac{1}{(2\pi)^{3}} (\xi).$$
 (8)

$$\left[(a+2b) \xi^{2} + (\chi + 2\rho) \xi_{3}^{2} \right] (\xi \xi) +$$

$$(2\pi)^{3} V_{3}(\xi \xi = \frac{1}{D(\xi)} \left\{ \left(a + b + \chi + \rho \right) \xi_{3} \left(f_{1} \xi_{1} + f_{2} \xi_{2} \right) - \left[\left(a + 2b \right) \xi^{2} - \left(a + b - \rho \right) \xi_{3}^{2} \right] f_{3} \right\}; \qquad (9)$$

$$(2\pi)^{3} V_{\alpha}(\boldsymbol{\xi}) = \frac{f_{\alpha}}{b \, \boldsymbol{\xi}^{2} + \rho \boldsymbol{\xi}_{3}^{2}} + \frac{\xi_{\alpha} \left(f_{1} \boldsymbol{\xi}_{1} + f_{2} \boldsymbol{\xi}_{2}\right)}{D(\boldsymbol{\xi}\boldsymbol{\xi} \left(b \, \boldsymbol{\xi}^{2} + \rho \boldsymbol{\xi}_{3}^{2}\right)} \Big[(a+b) \left(b+\rho\right) \boldsymbol{\xi}^{2} + \alpha = 1, 2; \qquad (10)$$

$$+ \left\{ (a+b)(\gamma+\rho) - (\chi+\rho)^{2} \right\} \xi_{3}^{2} \left] + (a+b+\chi+\rho) \frac{\xi_{\alpha}\xi_{3}}{D(\xi)} f_{3},$$

$$D(\xi) = (a+b+\chi+\rho) \xi_{3}^{2} \left[(\chi+2\rho) \xi^{2} + \gamma \xi_{3}^{2} \right] - \left[(a+2b) \xi^{2} + (\chi+2\rho) \xi_{3}^{2} \right] \left[(b+\rho) \xi^{2} + (\chi+\gamma+2\rho) \xi_{3}^{2} \right].$$
(11)

В силу действительности выражений (9)-(11) интеграл (4) можно записать в виде

$$u_{l}(\mathbf{r}) = \int V_{l}(\boldsymbol{\xi}) \cos(\mathbf{r}\boldsymbol{\xi}) d^{3}\boldsymbol{\xi} = \int \frac{\Delta_{lk}(\mathbf{e}) f_{k}}{\Delta(\mathbf{e})} \left(\int_{0}^{\infty} \cos\left\{ r \boldsymbol{\xi} \boldsymbol{\xi} \mathbf{n} \mathbf{e} \right) \right\} d\boldsymbol{\xi} \right) d\Omega(\mathbf{e}) , \qquad (12)$$

где
$$\mathbf{n} = \mathbf{r} / r$$
; $\mathbf{e} = \mathbf{\xi} / \boldsymbol{\xi}$; $\frac{\Delta_{lk}(\mathbf{e})\mathbf{f}_k}{\Delta(\mathbf{e})} = \boldsymbol{\xi}^2 \mathbf{V}_l(\mathbf{\xi})$, а

второе интегрирование проводится по полному телесному углу в пространстве векторов $\boldsymbol{\xi}$. Разложим единичный вектор \boldsymbol{e} по двум взаимно перпендикулярным направлениям, заданным единичными векторами \boldsymbol{n} и $\boldsymbol{\pi}$ (вектор $\boldsymbol{\pi}$ лежит в плоскости, образованной векторами \boldsymbol{n} и \boldsymbol{e}):

$$\mathbf{e} = (\mathbf{n}\mathbf{e})\mathbf{n} + \sqrt{1 - (\mathbf{n}\mathbf{e})^2} \quad \tau \tau = x\mathbf{n} + \sqrt{1 - x^2} \quad \tau \tau,$$

$$x \equiv (\mathbf{n}\mathbf{e}). \quad (13)$$

Тогда элемент телесного угла $d\Omega(\mathbf{e})$ в (12) может быть записан в виде

$$d\Omega(\mathbf{e}) = dx \, d\varphi_{\tau\tau} \tag{14}$$

Угол φ_{τ} лежит в плоскости, перпендикулярной радиусу-вектору **n**, и отсчитывается от произвольно выбранного направления в этой плоскости. Интеграл по ξ в (12) выражается через δ -функцию:

$$\int_{0}^{\infty} \cos\left\{r\xi\xi\right\} d\xi = \frac{1}{2} \int_{-\infty}^{+\infty} \exp(ir\xi\xi) d\xi = \frac{\pi}{r} \delta(x),$$
(15)

так что в результате интегрирования по x с учетом (13) имеем

$$u_{l}(\mathbf{r}) = \frac{\pi}{r} \int_{0}^{2\pi} \frac{\Delta_{lk}(\boldsymbol{\tau}(\theta, \varphi, \varphi_{\tau})) \mathbf{f}_{k}}{\Delta(\boldsymbol{\tau}(\theta, \varphi, \varphi_{\tau}))} d\varphi_{\boldsymbol{\tau}\boldsymbol{\tau}}.$$
 (16)

Тот факт, что $u_l(\mathbf{r})$, а значит, и компоненты искомого тензора Грина – однородные функции первого порядка от координат, заранее очевиден. Он

следует из вида уравнений (1), (3) и свойства δ функции $\delta(\alpha \mathbf{r}) = \alpha^{-3}\delta(\mathbf{r})$. Теперь остается выразить компоненты τ_i через $\varphi_{\mathbf{r}}$ и полярные углы радиуса-вектора θ , φ , после чего вычислить интеграл (16). Не трудно показать, что

$$\tau_{1} = \cos \varphi_{\tau\tau} (\sin \varphi - z \cos \theta \cos \varphi);$$

$$\tau_{2} = \cos \varphi_{\tau\tau} (-\cos \varphi - z \cos \theta \sin \varphi); \qquad (17)$$

 $\tau_3 = \cos \varphi_{\tau\tau} z \sin \theta ; \qquad z \equiv \mathrm{tg} \varphi_{\tau\tau} .$

Подставляя (17) в (16) и переходя к переменной *z*, окончательно получаем:

$$u_{l}(\mathbf{r}) = \frac{2\pi}{r} \int_{-\infty}^{+\infty} \frac{\Delta_{lk}(\theta, \varphi, z) \mathbf{f}_{k}}{\Delta(\theta, \varphi, z)} dz .$$
(18)

Интеграл (18) берется с помощью вычетов подынтегральной функции относительно полюсов, расположенных в верхней полуплоскости. Сами полюсы зависят от конкретного материала, поэтому нам нужна связь констант в (6) с реальными упругими модулями кристалла. В таблице приведены экспериментальные и расчетные значения упругих модулей для переходных гексагональных металлов, взятые из работы [3].

Привязываясь к ним, непосредственно из (6) получаем соотношения:

$$a = C_{12}; \quad b = \frac{1}{2}(C_{11} - C_{12});$$

$$\chi = C_{13} - C_{12}; \quad (19)$$

$$\rho = C_{55} - \frac{1}{2}(C_{11} - C_{12});$$

$$\gamma = C_{11} + C_{33} - 4C_{55} - 2C_{13}.$$

Металл	C_{11}	C_{12}	C_{13}	C_{33}	C_{55}
Zr (эксп.)	1.554	0.672	0.646	1.725	0.363
Ү (эксп.)	0.834	0.291	0.190	0.801	0.269
Ru (эксп.)	5.763	1.872	1.673	6.405	1.891
Re (эксп.)	6.344	2.66	2.02	7.011	1.691
Тс (теор.)	6.117	2.187	2.075	6.450	1.966
Os (теор.)	8.945	2.492	2.456	10.164	1.622

Экспериментальные (эксп.) и расчетные (теор.) значения упругих модулей, Мбар, переходных гексагональных металлов

Теперь найдем полюсы и вычислим интеграл (18). Начнем с компоненты $u_3(\mathbf{r})$. Для нее эти полюсы – корни биквадратного уравнения относительно переменной 2:

$$\Delta(\theta, \varphi, z) = \left(m\sin^4\theta - l\sin^2\theta - k\right)z^4 - (20)$$

$$\left(l\sin^2\theta + 2k\right)z^2 - k = 0,$$

где коэффициенты даются выражениями:

$$k = (a+2b)(b+\rho);$$

$$m = (a+b-\rho)\gamma - (\chi+2\rho)^{2};$$
 (21)

$$l = (a+2b)\gamma + (2b-\chi)(\chi+2\rho).$$

Уравнение (20) следует из (11) после замены е на π и подстановки выражений (17).

Подставив в (19) и (21) численные значения упругих модулей, можно убедиться, что z^4 – k, l, m > 0,а коэффициент при отрицательный для любого значения угла θ . Таким образом, все слагаемые в (20) одного знака и не равны нулю для любого θ . Это означает, что четыре корня уравнения (20) чисто мнимые и попарно комплексно сопряженные. Легко проверить, что нужные корни имеют вид:

$$z_{1,2} = \sqrt{-\frac{2k + (l \pm \sqrt{l^2 + 4km})\sin^2 \theta}{2(k + l\sin^2 \theta - m\sin^4 \theta)}}.$$
 (22)

Применяя теорему о вычетах, для искомой компоненты смещения из (18) получаем: T

$$4\pi r u_{3}(\mathbf{r}) = \frac{i}{\sqrt{l^{2} + 4km} (1 - n_{3}^{2})} \left[\frac{\Delta_{3k}(z_{1}) \mathbf{f}_{k}}{z_{1}} - \frac{\Delta_{3k}(z_{2}) \mathbf{f}_{k}}{z_{2}} \right].$$
(23)

Числитель дроби в квадратных скобках (23) следует из (9) после замены е на π и подстановки выражений (17):

$$\Delta_{3k}(z)\mathbf{f}_{k} = (a+b+\chi+\rho) \Big[z (\mathbf{f}_{1}n_{2}-\mathbf{f}_{2}n_{1}) - z^{2} (\mathbf{f}_{1}n_{1}+\mathbf{f}_{2}n_{2}) \Big] - \Big[(a+2b) + \Big\{ (a+2b) - (a+b-\rho)(1-n_{3}^{2}) \Big\} z^{2} \Big] \mathbf{f}_{3}.$$
(24)

 $n_1 = \sin \theta \cos \varphi;$ $n_2 = \sin \theta \sin \varphi;$ Здесь $n_3 = \cos \theta$ – компоненты единичного вектора $(\mathbf{n} = \mathbf{r} / r)$. Заметим, что линейное по *z* слагаемое в (24) вклада в (23) не дает. Вклад оставшихся слагаемых можно записать наиболее компактно, если ввести следующие обозначения:

$$p_{1}(n_{3}) = 2k + \left(l + \sqrt{l^{2} + 4km}\right)(1 - n_{3}^{2}); \quad (25)$$

$$p_{2}(n_{3}) = 2k + \left(l - \sqrt{l^{2} + 4km}\right)(1 - n_{3}^{2});$$

$$q(n_{3}) = 2\left[k + l\left(1 - n_{3}^{2}\right) - m\left(1 - n_{3}^{2}\right)^{2}\right].$$
Torga $z_{\beta} = i\sqrt{p_{\beta}(n_{3})/q(n_{3})}, \quad (\beta = 1, 2),$

$$= z^{2} - \frac{2}{2}\sqrt{l^{2} + 4km}(1 - n^{2}) - 2\mu coronag$$

$$z_1^2 - z_2^2 = --\sqrt{l^2 + 4km(1 - n_3^2)}$$
, а искома
 q
 функция (23) принимает вил:

$$4\pi r \, u_3(\mathbf{r}) = \frac{1}{(1-n_3^2)\sqrt{l^2 + 4km}} \left\{ \left(a+b+\chi+\rho\right) (f_1 n_1 + f_2 n_2) n_3 \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{p_\beta(n_3)}{q(n_3)}} + \right.$$
(26)

$$+ \left[\left[(b+\rho) + (a+b-\rho)n_3^2 \right] \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{p_\beta(n_3)}{q(n_3)}} - (a+2b) \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{q(n_3)}{p_\beta(n_3)}} \right] f_3 \right].$$

Заменяя \mathbf{f}_k на δ_{kn} , получаем соответствующие компоненты тензора Грина:

$$G_{3\alpha}(\mathbf{r}) = \frac{1}{4\pi r} \frac{\left(a+b+\chi+\rho\right)}{\sqrt{l^2+4km}} \frac{n_{\alpha}n_3}{\left(1-n_3^2\right)} \sum_{\beta=1}^2 \left(-1\right)^{\beta+1} \sqrt{\frac{p_{\beta}(n_3)}{q(n_3)}}, \qquad \alpha = 1, 2;$$
⁽²⁷⁾

$$G_{33}(\mathbf{r}) = \frac{1}{4\pi r} \frac{1}{(1-n_3^2)\sqrt{l^2 + 4km}} \left(\left[(b+\rho) + (a+b-\rho)n_3^2 \right] \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{p_\beta(n_3)}{q(n_3)}} - \frac{1}{(1-n_3^2)\sqrt{l^2 + 4km}} \right)$$
(28)

$$-(a+2b)\sum_{\beta=1}^{2}(-1)^{\beta+1}\sqrt{\frac{q(n_{3})}{p_{\beta}(n_{3})}}$$

Перейдем к вычислению компонент $u_{\alpha}(\mathbf{r})$ ($\alpha = 1, 2$). Здесь согласно (10) три слагаемых ($u_{\alpha} = u_{\alpha}^{(1)} + u_{\alpha}^{(2)} + u_{\alpha}^{(3)}$). Самое простое последнее, поскольку оно содержит те же полюсы, что и $u_{3}(\mathbf{r})$, и для него остается справедливой формула (23). Различие лишь в выражении (24). В данном случае

$$\Delta_{\alpha k}^{(3)}(z)\mathbf{f}_{k} = (a+b+\chi+\rho) \times \\ \times \left[z \left(n_{2}\delta_{\alpha 1} - n_{1}\delta_{\alpha 2} \right) - z^{2}n_{\alpha}n_{3} \right] \mathbf{f}_{3}.$$
⁽²⁹⁾

Как уже отмечалось, линейное слагаемое по *z* в (29) вклада в (23) не дает. Поэтому результат следующий:

$$4\pi r \, u_{\alpha}^{(3)}(\mathbf{r}) = \frac{(a+b+\chi+\rho)}{\sqrt{l^2+4km}} \frac{n_{\alpha}n_3}{(1-n_3^{-2})} \times \\ \times \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{p_{\beta}(n_3)}{q(n_3)}} \, \mathbf{f}_3.$$
(30)

Обратим внимание, что $u_{\alpha}^{(1,2)}(\mathbf{r})$ не содержат \mathbf{f}_3 (см. (10)). Поэтому компоненты $G_{\alpha 3}(\mathbf{r})$ у тензора Грина следуют именно из (30) при замене \mathbf{f}_3 на δ_{3n} и n = 3 и в точности совпадают с (27), т.е. $G_{\alpha 3}(\mathbf{r}) = G_{3\alpha}(\mathbf{r})$.

Далее рассмотрим
$$u_{\alpha}^{(1)}(\mathbf{r})$$
. Здесь полюсы - корни квадратного уравнения:

$$\Delta(\theta, \varphi, z) = \left(b + \rho \sin^2 \theta\right) z^2 + b = 0.$$
 (31)

Для всех металлов, приведенных в таблице, константа b и коэффициент при z^2 оба положительные при любом θ . Таким образом, имеем два мнимых комплексно сопряженных корня. Поэтому наш полюс и его вклад в (18) имеют вид:

$$z_{3} = \sqrt{-\frac{b}{b + \rho \sin^{2} \theta}};$$

$$4\pi r \, u_{\alpha}^{(1)}(\mathbf{r}) = \frac{f_{\alpha}}{\sqrt{b B}};$$

$$B = b + \rho(1 - n_{3}^{2}).$$
(32)

Осталось слагаемое $u_{\alpha}^{(2)}(\mathbf{r})$. Согласно (10) имеем три полюса: (22) и (32), поэтому из (18) аналогично (23) получаем:

$$4\pi r u_{\alpha}^{(2)}(\mathbf{r}) = -\frac{2i}{qB} \left(\frac{1}{(z_1^2 - z_2^2)} \left[\frac{F_{\alpha}(z_1)}{z_1(z_1^2 - z_3^2)} - \frac{F_{\alpha}(z_2)}{z_2(z_2^2 - z_3^2)} \right] + \frac{F_{\alpha}(z_3)}{z_3(z_1^2 - z_3^2)(z_2^2 - z_3^2)} \right].$$
(33)

Числитель (33) может быть представлен в виде:

$$F_{\alpha}(z) = \Phi_{\alpha}(z,\theta,\varphi) \Big[M + N z^{2} \Big]; \qquad M = (a+b)(b+\rho);$$
(34)

$$N = (a+b)(b+\rho) + \Big[(a+b)(\gamma+\rho) - (\chi+\rho)^{2} \Big] (1-n_{3}^{2});$$

$$\Phi_{\alpha}(z,\theta,\varphi) = \Bigg[f_{\alpha} - z \Psi_{\alpha}(\theta,\varphi) - (1-z^{2}n_{3}^{2}) \frac{n_{\alpha}(n_{1}f_{1}+n_{2}f_{2})}{1-n_{3}^{2}} \Bigg].$$

Явный вид $\Psi_{\alpha}(\theta, \varphi)$ не важен. Важно то, что $\Psi_{\alpha}(\theta, \varphi)$ не содержит зависимости от z. Действительно, используя равенство

$$\frac{F_{\alpha}(z_{\beta})}{z_{\beta}(z_{\beta}^{2}-z_{3}^{2})} = -\frac{\Phi_{\alpha}(z_{\beta},\theta,\varphi)}{z_{3}^{2}} \left[\frac{M}{z_{\beta}} - \frac{z_{\beta}(M+N z_{3}^{2})}{z_{\beta}^{2}-z_{3}^{2}}\right],$$

$$\beta = 1, 2, \qquad (35)$$

можно убедиться, что слагаемое с $\Phi_{\alpha}(z,\theta,\varphi) = z\Psi_{\alpha}(\theta,\varphi)$ вклада в (33) не дает. Чтобы выписать $u_{\alpha}^{(2)}(\mathbf{r})$ в обозримом виде, введем обозначение

$$A_{\beta}(n_{3}) = \frac{(a+b)(b+\rho)}{\sqrt{p_{\beta}(n_{3})}} + \frac{\{(a+b)(b\gamma-\rho^{2})-b(\chi+\rho)^{2}\}\sqrt{p_{\beta}(n_{3})}(1-n_{3}^{2})}{Bp_{\beta}(n_{3})-bq(n_{3})},$$
(36)

которое следует из (35) с учетом явных выражений для коэффициентов M и N, полюсов z_k (22) и (32), а также соотношений $(z_\beta^2 - z_3^2) = -\frac{1}{qB} (Bp_\beta(n_3) - bq(n_3))$. В результате

$$4\pi r u_{\alpha}^{(2)}(\mathbf{r}) = \frac{1}{b\sqrt{l^2 + 4km}} \frac{\sqrt{q(n_3)}}{(1 - n_3^2)} \sum_{\beta=1}^2 (-1)^{\beta+1} A_{\beta}(n_3) \left[f_{\alpha} - \frac{(q + p_{\beta}n_3^2)}{q(n_3)} \frac{n_{\alpha}(n_1 f_1 + n_2 f_2)}{1 - n_3^2} \right] -$$
(37)

$$-\frac{B}{\sqrt{bB}(b+\rho)(1-n_{3}^{2})}\left[f_{\alpha}-\frac{(B+bn_{3}^{2})}{B}\frac{n_{\alpha}(n_{1}f_{1}+n_{2}f_{2})}{1-n_{3}^{2}}\right]$$

Отметим, что при получении (37) было учтено равенство

$$\frac{2q\left\{(a+b)\left(b\gamma-\rho^2\right)-b\left(\chi+\rho\right)^2\right\}(1-n_3^2)}{\left(Bp_1(n_3)-bq(n_3)\right)\left(Bp_1(n_3)-bq(n_3)\right)} = -\frac{1}{(b+\rho)(1-n_3^2)}.$$
(38)

Суммируя (30), (32) и (37), имеем окончательное выражение для $u_{\alpha}(\mathbf{r})$. Меняя в нем компоненты f_{α} на $\delta_{\alpha\gamma}$ ($\gamma = 1, 2$), получаем искомые компоненты $G_{\alpha\gamma}$ тензорной функции Грина:

$$4\pi r \ G_{\alpha\gamma}(\mathbf{r}) = \left[\frac{\sqrt{q(n_3)}}{b\sqrt{l^2 + 4km}} \sum_{\beta=1}^2 (-1)^{\beta+1} \ A_{\beta}(n_3) - \frac{bn_3^2}{\sqrt{bB}(b+\rho)}\right] \frac{\delta_{\alpha\gamma}}{1 - n_3^2} - \frac{bn_3^2}{b^2} = \frac{bn_3^2}{b^2} + \frac{bn_$$

$$\left[\frac{\sqrt{q(n_3)}}{b\sqrt{l^2+4km}}\sum_{\beta=1}^2(-1)^{\beta+1}\frac{q+p_\beta n_3^2}{q(n_3)}A_\beta(n_3)-\frac{B+bn_3^2}{\sqrt{bB}(b+\rho)}\right]\frac{n_\alpha n_\gamma}{(1-n_3^2)^2}.$$

Напомним, что компоненты $G_{\alpha 3}(\mathbf{r}) = G_{3\alpha}(\mathbf{r})$ и $G_{33}(\mathbf{r})$ найдены выше (см. (27) и (28)).

В заключение покажем, как делается переход к изотропному приближению, которому соответствуют условия: $\gamma = \chi = \rho = 0$. При этом из (19) следует: $C_{13} = C_{12} = a$;

$$C_{33} = C_{11} = C_{22} = a + 2b$$
;
 $C_{55} = \frac{1}{2} (C_{11} - C_{12}) = b$, т. е., как и должно быть;

остается только два независимых модуля C_{11} и C_{12} . Однако формулы (27), (28) и (39) теряют смысл изза неопределенности типа %. Поэтому переход к изотропии надо делать, например, так: $\gamma \rightarrow 0$ при $\chi = \rho = 0$. Заметим, что в этом случае из (21) и (25) следуют приближенные выражения:

$$\sqrt{\frac{p_{\beta}(n_{3})}{q(n_{3})}} \approx 1 + \frac{(-1)^{\beta+1}}{2} \sqrt{\frac{a+b}{k}\gamma} (1-n_{3}^{2});$$

$$\sqrt{\frac{q(n_3)}{p_{\beta}(n_3)}} \approx 1 + \frac{\left(-1\right)^{\beta}}{2} \sqrt{\frac{a+b}{k}\gamma} (1-n_3^2); \quad (40)$$

$$\sqrt{l^2 + 4km} \approx 2\sqrt{k(a+b)\gamma}.$$

(30)

Подстановка (40) в (27), (28) дает соответствующие компоненты тензора Грина изотропной упругой среды ($a \equiv \lambda$; $b \equiv \mu$, где λ и μ – коэффициенты Ламэ):

$$G_{3\alpha}^{(0)}(\mathbf{r}) = \frac{1}{4\pi r} \frac{(a+b)}{2b(a+2b)} n_{\alpha} n_{3};$$

$$G_{33}^{(0)}(\mathbf{r}) = \frac{1}{4\pi r} \frac{a+b}{2b(a+2b)} \left[\frac{a+3b}{a+b} + n_{3}^{2}\right].$$
 (41)

Далее из (32) и (36) имеем

$$A_{\beta}(n_{3}) \approx \frac{b(a+b)}{\sqrt{p_{\beta}(n_{3})}} \left[1 + \frac{\gamma p_{\beta}(n_{3})(1-n_{3}^{2})}{b(p_{\beta}(n_{3})-q(n_{3}))} \right],$$

$$B \approx b.$$
(42)

Подставим (42) сначала во вторую часть (39), что соответствует компонентам с $\alpha \neq \gamma$:

$$G_{\alpha\gamma}(\mathbf{r}) \approx \frac{1}{4\pi r} \left[\frac{(a+b)}{\sqrt{l^2 + 4km}} \sum_{\beta=1}^2 (-1)^\beta \left(\sqrt{\frac{q}{p_\beta}} + \sqrt{\frac{p_\beta}{q}} n_3^2 \right) \left(1 + \frac{\gamma p_\beta (1-n_3^2)}{b \left(p_\beta - q\right)} \right) + \frac{1+n_3^2}{b} \right] \frac{n_\alpha n_\gamma}{(1-n_3^2)^2} .$$
(43)

Проделав несложные вычисления с учетом соотношений (40), в пределе $\gamma \rightarrow 0$ получаем

$$G_{\alpha\gamma}(\mathbf{r}) \to G^{(0)}_{\alpha\gamma}(\mathbf{r}) = \frac{1}{4\pi r} \frac{a+b}{2b(a+2b)} n_{\alpha} n_{\gamma}.$$
⁽⁴⁴⁾

Наконец, случай с $\alpha = \gamma$ в (39):

$$4\pi r G_{\alpha\alpha}(\mathbf{r}) \approx \left[\frac{a+b}{\sqrt{l^2+4km}} \sum_{\beta=1}^2 (-1)^{\beta+1} \sqrt{\frac{q}{p_\beta}} \left(1 + \frac{\gamma p_\beta (1-n_3^2)}{b(p_\beta - q)}\right) - \frac{n_3^2}{b}\right] \frac{1}{1-n_3^2} + \frac{a+b}{2b(a+2b)} n_\alpha^2.$$
(45)

Снова подставляем сюда соотношения (40), переходим к пределу $\gamma \to 0$ и получаем искомые компоненты:

$$G_{\alpha\alpha}(\mathbf{r}) \to G_{\alpha\alpha}^{(0)}(\mathbf{r}) = = \frac{1}{4\pi r} \frac{a+b}{2b(a+2b)} \left[\frac{a+3b}{a+b} + n_{\alpha}^{2} \right], \quad \alpha = 1, 2.$$
⁽⁴⁶⁾

Отметим, что в отличие от кубических кристаллов результирующие соотношения (27), (28) и (39) для данного класса металлов являются точными. Однако будет ли от этого польза с точки зрения их приложения, например для вычисления энергии упругого взаимодействия точечных дефектов с порой, пока не ясно.

ЛИТЕРАТУРА

- 1. Л.Д. Ландау, Е.М. Лифшиц. *Теория упругости*. М.: «Наука», 1987, 246 с.
- И.М. Лифшиц, Л.Н. Розенцвейг // ЖЭТФ. 1947, v. 17, p. 783.
- L. Fast, J.M. Wills, B. Johansson, O. Eriksson // Phys. Rev. 1995, v. B 51, p. 17431.

Статья поступила в редакцию 16.06.2011 г.

ТЕНЗОРНА ФУНКЦІЯ ГРІНА ГЕКСАГОНАЛЬНИХ ПЕРЕХІДНИХ МЕТАЛІВ

П.М. Остапчук

Методом І.М. Ліфшица і Л.М. Розенцвейга одержано вирази для компонент тензорної функції Гріна для основного рівняння теорії пружності у випадку гексагональних 4d та 5d перехідних металів. На відміну від металів кубічної сингонії ці вирази є точними. Показано наявність граничного переходу до ізотропного наближення.

TENSOR GREEN'S FUNCTION OF HEXAGONAL TRANSITION METALS

P.N. Ostapchuk

Analytical expressions for the Green's function tensor have been derived by the Lifshitz-Rosenzweig method for the basic equation of the elasticity theory in the case of hexagonal 4d and 5d transition metals. In contrast to cubic metals, these expressions are exact. A transition to the isotropic approximation is shown.