К ТЕОРИИ ТЕРМОВАКУУМНОЙ СУШКИ

В.В. Слёзов, В.А. Кутовой, Л.И. Николайчук

Национальный научный центр «Харьковский физико-технический институт», Украина, 61108, г.Харьков, ул.Академическая, 1; e-mail: nikl@kipt.kharkov.ua

Вакуумная сушка является эффективным способом освобождения от избыточной воды различного сырья, в том числе органических материалов (пищевого сырья и полуфабрикатов). Ввиду большого количества факторов, влияющих на режим вакуумной сушки, выбор оптимальных значений параметров работы сушильного агрегата представляется довольно сложным. В настоящей работе теоретически исследовалась кинетика испарения свободной воды с поверхности в зависимости от режимных параметров сушки. Получена и решена основная система уравнений, описывающих процесс испарения воды в квазистационарном случае. Найден поток испаряемой воды с единицы площади поверхности в единицу времени.

ВВЕДЕНИЕ

Как известно, процесс сушки различных объектов как неорганических, так и органических материалов и сырья является во многих случаях одним из важных звеньев технологических процессов. Освобождение от избыточной воды различного сырья в процессе сушки улучшает технические характеристики неорганических материалов, во многих случаях делая их более долговечными и работоспособными. То же можно сказать и об органическом сырье, в том числе и о растительном. Для растительного сырья наиболее важным является получение его при сушке экологически чистым с наибольшим сохранением его полезных веществ, возможностью длительного хранения и наименьших энергозатрат для сушки единицы продукта. Таким образом, поставленная проблема является комплексной и сложной, поэтому решения ее возможны только поэтапно.

На первом этапе исследуем испарение свободной воды в термовакуумных условиях для определения параметров, дающих наименьшие энергозатраты.

Для свободной воды, находящейся в некотором объёме, главными параметрами при термовакуумной сушке являются энергозатраты на нагрев и откачку паров воды насосом.

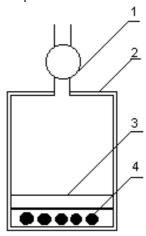
Для теоретического исследования режима сушки необходимо получить и исследовать уравнения, описывающие этот процесс.

ОСНОВНАЯ СИСТЕМА УРАВНЕНИЙ

На первом этапе будем рассматривать процесс испарения воды в плоской кювете в камере, где насосом создаётся форвакуум (рис.). Это необходимо для уменьшения тепловых потерь в окружающую среду. Кроме того плоский слой воды подогревается внешним источником тепла: излучением либо подогревом дна сосуда, в котором находится вода. Таким образом, процесс испарения воды в кювете будет определяться температурой подогрева и скоростью откачки паров воды насосом, которые могут регули-

роваться. В получаемых уравнениях паразитными потерями тепла будем пренебрегать.

Рассматриваемая система сушки имеет три области по координате x, для которых уравнения теплового и массового баланса отличаются. На границах этих областей следует поставить граничные условия. Первая область $0 \le x \le \xi(t)$, где за нуль принимается дно кюветы с водой толщиной $\xi(t)$, ($\xi(0) = d$ — первоначальный слой воды). Вторая область $\xi \le x \le L$, где L — длина камеры , в которую помещена кювета с водой. Третьей областью $\infty > x > L$ является окружающая среда, в которую форвакуумным насосом, расположенным на конце камеры 1 (см. рис.), откачивается из камеры газ с парами испаряемой воды и соответственно уходит избыточное тепло от нагревателя, потраченное на подогрев газа в камере.



1 — насос, 2 — камера, 3 — кювета с водой, 4 - подогреватель

Будем рассматривать симметричное расположение деталей в установке (см. рисунок) относительно оси камеры, кюветы с водой и насоса. При L >> d

приближённо с хорошей точностью можно считать, что все величины (температура T, плотность паров воды n, плотность других газов n^0 и соответственные им давления, гидродинамическая скорость откачки смеси водяных паров и остальных газов V) являются функциями только одной координаты x. При этом пренебрегаем малыми краевыми эффектами у краёв кюветы и насоса, которые делают движение газов трёхмерным в малых областях сушильной камеры. Краевые эффекты малы, если длина камеры L значительно больше наибольшего размера из величин $\sqrt{S_H}$, $\sqrt{S_C}$, l, где S_H — площадь отверстия насоса; S_C — площадь кюветы с водой; l - расстояние от края кюветы до стенки камеры.

Отметим, что так как газ в камере имеет малое давление, то его можно, как известно, считать идеальным (совершенным), т.е. в дальнейшем не учитывать взаимодействие его молекул, и. пользоваться уравнением состояния идеального газа:

$$P^i = n^i T \,, \tag{1}$$

где P^i — парциальное давление i сорта газа. Это также даёт возможность в уравнении Навье-Стокса не учитывать диссипативные члены. Так как в дальнейшем предполагается применение развиваемого подхода к сушке органического сырья, ограничимся малым подогревом и достаточно малой мощностью насоса:

$$\frac{\Delta T}{T_0} <<1_{\text{ M}} V << c_{\text{ }}, \tag{2}$$

где Δ T= T- T_0 , T- температура, отсчитываемая от T_0 - температуры среды в энергетических единицах; V- скорость потока в камере; c- скорость звука. Как следует из ограничения (2) при V<< c газ в камере можно считать несжимаемым [1,2]. Физически это связано с тем, что время изменения гидродинамического потока в камере τ = L/V>> L/c, где L/c- характерное время релаксации градиентов скорости потоков в камере. Из уравнения непрерывности для потока в камере с учётом пренебрежимо малой сжимаемости и одномерности имеем:

$$\frac{\partial V}{\partial x} = 0. (3)$$

Отсюда сразу находим поток в камере с учётом непрерывности полного потока на границе входа насоса в камеру L:

$$nSV = \dot{n}\dot{\omega}$$
 (4)

где $n^g = n^0 + n$, n^g - полная плотность газа в камере откачки; (i) - скорость откачки в единицу времени $(c M^3/c)$.

Объём насоса успевает при работе всё время заполняться газом с плотностью $n^g = n^0 + n$, n -плотность паров воды; n^0 – плотность остаточного газа. Отсюда имеем:

$$V = \frac{\dot{0}}{S} \tag{5}$$

S - площадь камеры.

Таким образом, при рассматриваемых условиях решение уравнения Навье-Стокса имеет очень простой вид (5).

На самом деле уравнение (5) пригодно для установившегося (стационарного) режима течения газа. При переходе от одного режима к другому в камере, естественно, нужно решать полное уравнение Навье-Стокса. При малых изменениях плотности газа формула (5) вполне пригодна и зависит только от «медленного» времени, связанного с изменением режима работы насоса.

Время τ_p выхода на стационарный режим есть:

$$\tau_p = \frac{L}{V} = \frac{LS}{\dot{\omega}} = \frac{\Omega}{\dot{\omega}} \,, \tag{6}$$

где Ω - объём камеры. Это время заполнения объёма камеры парами воды. По предположению $\tau_p << T_H$, T_H - интервал времени работы насоса. Таким образом, полной системой уравнений для определения процесса сушки будет уравнение баланса тепла и паров воды, а также уравнение определения скорости изменения уровня воды в кювете $\xi(t)$. Для переходных процессов нужно, как уже говорилось, добавить уравнение Навье-Стокса для газа в камере.

Уравнение теплового баланса в системе слой воды толщиной $\xi(t)$ - камера – насос с начальным и граничными условиями на границах соответствующих областей имеет вид:

$$n^{L}C_{p}^{L}\frac{\partial T}{\partial t} = -\operatorname{div}j_{Q} + I; j_{Q} = -\kappa \frac{\partial T}{\partial x}, \quad (7)$$

$$0 \le x \le \xi$$

t - время; x - координата, отсчитываемая от дна кюветы, в одномерной системе значок $\operatorname{div}=\frac{\partial}{\partial x}$; n^L - плотность молекул воды (число молекул в единице объёма); C_p^L - теплоёмкость на молекулу воды; T - температура воды, j_Q - поток тепла на единицу площади; χ^L - коэффициент теплопроводности воды (энергия/см²с), χ^L = $n^L C_p^L \chi^L$, где χ^L - коэффициент температуропроводности ($1/c M^2 c$); I - объёмный источник тепла (если он есть).

В начальный момент $T\Big|_{t=0} = T_0$ - температура окружающей среды.

Граничные условия в области 0≤ x≤ ξ имеют вид:

$$T\Big|_{t=0}, j_{\mathcal{Q}}\Big|_{x=0} = J_{0},$$

$$j_{\mathcal{Q}}\Big|_{\xi-\varepsilon,\varepsilon\to 0} - j_{\mathcal{Q}}\Big|_{\xi=\varepsilon,\varepsilon\to 0} = qJ,$$

$$T\Big|_{\xi-\varepsilon} = T^{g}\Big|_{\xi+\varepsilon}, \varepsilon\to 0;$$

$$J = \frac{P_{0}(T) - P(T)}{\sqrt{2\pi mT}} (1 - \overline{R}(T)) =$$

$$= (P_{0}(T) - P^{p}(T))\beta, \beta = \frac{1 - \overline{R}}{\sqrt{2\pi mT}}$$

 $\epsilon \to 0$ определяет с какой стороны границы лежит соответствующая величина.

 J_0 - внешний поток тепла от нагревателя, поглощённый в единицу времени на единицу площади воды (энергия/см²с); T^g - температура газа в камере на поверхности воды; $\overline{R}(T)$ - средний коэффициент отражения падающей молекулы воды от поверхности воды; $P_0(T)$ - давление насыщенного пара у поверхности воды; P(T) - лавление насыщенного воды у её поверхности; n - плотность паров воды в камере снаружи от поверхности воды; q - скрытая теплота парообразования; J - поток на единицу площади в единицу времени испаряемых молекул воды (I/cм²c) [1,2]; $j_{\varepsilon+\xi}^g$ - поток тепла в камере с внешней стороны поверхности воды. Второе граничное условие учитывает фазовое превращение вода—пар на границе $x=\xi(t)$.

В области $L \le x \le \xi$ отсутствует объёмный источник тепла в уравнении (7) и уравнение баланса тепла в этой области имеет вид:

$$n^{g}C_{p}^{g}\frac{\partial}{\partial t}T^{g} = -\operatorname{div}j_{Q}^{g}. \tag{9}$$

Поток в этой области содержит конвективный перенос тепла, связанный со скоростью потока газа V , определяемой работой насоса.

$$j_Q^g = -\kappa \frac{g \partial T^g}{\partial x} + (n^p + n^0) C_p^g \Delta T^g V$$
,(10)

 T^g - температура газа в камере (в общем случае T^g = $T^g(x,t)$); κ^g - коэффициент теплопроводности газа в камере; C_p^g - теплоёмкость на молекулу в газе. Так как газы в камере идеальные, то и C_p^g - одинаковые для всех сортов газов в камере. ΔT^g = T^g - T_0 .

Граничное условие к уравнению (9) с учётом (8) будет:

$$-\kappa \frac{\partial T}{\partial x}\Big|_{\xi-\varepsilon} + \kappa \frac{\partial T^g}{\partial x}\Big|_{\xi+\varepsilon} = qJ + (n+n^0)C_p^g \Delta T^g V$$

$$\varepsilon \to 0$$
(11)

На границе третьей области x=L (окружающей среды) имеем из непрерывности потока тепла через насос в окружающую среду

$$j\Big|_{L-\varepsilon} = -\kappa \frac{g \frac{\partial T^g}{\partial x}}{\partial x}\Big|_{L-\varepsilon} + (n+n^0)C_p^g \Delta T^g V\Big|_{L-\varepsilon} =$$

$$= -\kappa \frac{g \frac{\partial T^g}{\partial x}}{\partial x}\Big|_{L+\varepsilon} + (n+n^0)C_p^g \Delta T^g \frac{\dot{\omega}}{S},$$

$$\varepsilon \to 0, \quad T^g\Big|_{L-\varepsilon} = T^g\Big|_{L+\varepsilon}$$
(12)

Уравнение баланса молекул пара имеет вид:

$$\frac{\partial n}{\partial x} = -\operatorname{div} j; \ j = -D \frac{\partial n}{\partial x} + Vn$$

$$\xi \le x \le L$$

$$n\Big|_{t=0} = 0; \ j\Big|_{\xi+\varepsilon} = J; \ j\Big|_{L} = -D \frac{\partial n}{\partial x}\Big|_{L} + nV$$
(13)

Связь области x < L с окружающей средой (третья область) определяется потоком частиц через насос так же, как и в (10) с заменой $\kappa^g \to D$ и заменой $C^g \wedge T^g$ на единицу. Отметим, что в уравнение(12) входит только плотность водяных паров n. Равенство температур в этом случае отсутствует. Отметим, что около поверхности воды пары испаряемой воды имеют нулевую конвективную скорость. Однако на расстоянии свободного пробега пары воды смешиваются с газом в камере и образуют единый идеальный газ с соответствующей конвективной скоростью V . Это означает, что время такой релаксации $\tau \approx \lambda / V_T$ (λ - длина свободного пробега, V_T - тепловая скорость молекул) значительно меньше всех других времён релаксации, что всегда выполняется при достаточной плотности остаточного газа

Для скорости изменения уровня воды, пренебрегая движением до её поверхности, имеем при испарении:

$$n^{L} \frac{d\xi}{dt} = -J \Big|_{T=T(\xi-\varepsilon), \, \varepsilon \to \, 0} \,. \tag{14}$$

Оценим условия применимости формулы (14). Её использование означает, что в процессе сушки время установления стационарного состояния τ_p (5) должно быть много меньше времени испарения слоя воды толщиной ξ .

$$\tau_p = \frac{L}{V} = \frac{L}{\dot{\omega}/S} = \frac{\Omega}{\dot{\omega}} < \frac{\xi}{d\xi/dt} \,. \tag{15}$$

Скорость испарения $J = n \frac{\omega}{S} = L n \frac{\omega}{\Omega}$, или используя (14), получим:

$$\frac{d\xi}{dt} = \frac{n}{n^L} < \frac{\dot{0}}{S} < < \frac{\dot{0}}{S} = V \text{ так как } \frac{n}{n^L} < 1. \quad (16)$$

Неравенство (16) выполняется, если

$$\frac{\xi}{L} > \frac{n}{n^L} \,. \tag{17}$$

Формулы (14) и (15) указывают условия, при которых полученная система уравнений имеет квазистационарное (при $\dot{\omega}$ = 0 стационарное) состояние, определяемое работой насоса, и выходит на этот режим за время τ_p . Из (21) также следует толщина слоя воды, меньше которой нужно уже пользоваться нестационарными уравнениями.

$$\xi_{\min} = \frac{n}{n^L} L = \frac{\widetilde{n}}{n^L} L = \frac{J_0 L}{q n^L \dot{\omega} / S} = \frac{J_0 \Omega}{q n^L \dot{\omega}}. \quad (18)$$

Далее будет показано, что n в камере в квазистационарном состоянии равно \widetilde{n} , $\widetilde{n} = \frac{J_0}{a} \frac{S}{\widetilde{n}}$. Фи-

зически ξ_{\min} - это толщина слоя воды, испарение которого сможет только заполнить камеру парами воды с плотностью n. Если площадь кюветы S_k меньше площади камеры S, то ξ_{\min} увеличивается в соотношении S/S_k , что очевидно.

Проинтегрируем уравнения (7,9,13) по соответствующим областям с использованием граничных условий. Тогда

$$\xi n^{L} C_{p}^{L} \frac{d\overline{T}}{dt} = J_{0} - qJ - (n+n^{0}) C_{p}^{g} \Delta T^{g} V + \kappa^{g} \frac{\partial T^{g}}{\partial x} \Big|_{\xi+\varepsilon}$$
(19)

$$T=\overline{T}=T^g\Big|_{\xi+\varepsilon}$$
 , где $\overline{T}=rac{1}{\xi}\int\limits_0^\xi Tdx$ - средняя температура

слоя воды. Здесь опущен объёмный источник тепла в (7), который учтём ниже. Проинтегрируем (9) по области $\xi < x < L$. Тогда, используя (8), получим:

$$\begin{split} &Ln^{g}C_{p}^{g}\frac{d\overline{T}^{g}}{dt}=j_{Q}^{g}\Big|_{\xi+\varepsilon}-j_{Q}^{g}\Big|_{L-\xi}=\\ &=-\kappa\frac{g\partial T^{g}}{\partial x}\Big|_{\xi-\varepsilon}+\left(n+n^{0}\right)C_{p}^{g}\Delta T^{g}V\Big|_{\xi-\varepsilon}+\ .\ (20)\\ &+\kappa\frac{g\partial T^{g}}{\partial x}\Big|_{L-\varepsilon}-\left(n+n^{0}\right)C_{p}^{g}\Delta T^{g}V\Big|_{L-\varepsilon} \end{split}$$

Здесь отброшен малый член $n^L C_p^L T \frac{d\zeta}{dt}$ по сравне-

нию с $j_{\mathcal{Q}}\Big|_{\xi_{-\epsilon}} \approx qJ$, их отношение даёт с использованием (14)

$$\frac{n^{\iota}C_{p}^{\iota}T^{d\xi}/dt}{j_{\varrho}|_{\iota}} \cong \frac{C_{p}^{\iota}T}{q} << 1.$$
 (21)

Температуру удобно отсчитывать от температуры окружающей среды $T \! \to T \! - T_0$.

$$\overline{T}^g = \frac{1}{L} \int_{\xi}^{L} T^g dx$$
 , \overline{T}^g - средняя температура газа в ка-

мере. Так как пар испаряется в камеру, где имеется остаточный газ n^0 , то его средняя температура может отличаться от температуры поверхности воды.

Проинтегрируем теперь уравнение баланса для молекул пара n по области $\xi < x < L$. Тогда получим:

$$L\frac{d\overline{n}}{dt} = J - nV \Big|_{L-\varepsilon} + D\frac{\partial n}{\partial x} \Big|_{L-\varepsilon} . \tag{22}$$

Исходная система уравнений (7,9,13) с соответствующими начальным и граничными условиями, уравнение (14) и условие (10) образуют полную систему уравнений для изучаемого процесса в общем виде. Полученные усреднённые уравнения (14,19,20,22) не являются полной системой, так как содержат градиентные члены на границах.

Важным в большинстве случаев часто является возможность системе находиться в квазистационарном состоянии, определяемом работой насоса. Это будет иметь место, если выход на стационар или переходные процессы существенно не влияет на усреднённые характеристики явлений или процесса. В нашем случае это будет наблюдаться, если насос или нагреватель, или то и другое вместе работают в режиме «медленного времени». Это означает, что все времена релаксации малы по сравнению с характерным временем изменения режима работы насоса или выхода его на стационарное состояние. То же самое можно сказать и о нагревателе.

КВАЗИСТАЦИОНАРНОЕ СОСТОЯНИЕ В СИСТЕМЕ СЛОЙ ВОДЫ – КАМЕ-РА – НАСОС

В силу стационарности и одномерности потоки тепла и частиц будут постоянными. Постоянной бу-

дет также конвективная скорость $V = \frac{\dot{\omega}}{S}$ и темпе-

ратура T = T^g = const . В слое воды будет устанавливаться поток тепла через весь слой от внешнего источника J_0 (11). На поверхности воды происходит фазовое превращение вода-пар. Уровень воды уменьшается с характерным временем меньше времени релаксации, если выполняются условия (15) и (16). Это означает, что все физические величины можно вычислять как в истинно стационарном случае при заданной толщине слоя воды, и как след-

ствие этих расчетов, вычислять после и скорость сушки.

Отметим, что все процессы переноса тепла теплопроводностью и молекул диффузией в камере значительно меньше переноса тепла и частиц конвективной частью потока, определяемой насосом.

После этих замечаний, пренебрегая всеми градиентами (уравнение (20) в этом случае исчезает), в стационарном случае получаем из (19) и (22) с соответствующими граничными условиями. Уравнение (12) удовлетворяется при $V=\dot{\omega}/S$. В результате получим

$$J_0 - n^g \Delta T C_V^{g\dot{0}} / C = qJ$$
 (25)

$$J = n \dot{0} / S; \tag{26}$$

$$V = \dot{0} / S; \tag{27}$$

$$n^L \frac{d\zeta}{dt} = J; (28)$$

$$n^g = n + n^0$$
, $\Delta T = T - T_0$.

Решая уравнения (25,26), найдём n и ΔT , а зная их, определим и J (8).

Из уравнения (26) относительно плотности паров в камере n, получим:

$$n = \frac{P_0(T)}{\frac{\dot{\omega}}{S}\beta(T) + T} \cong \frac{P_0(T_0 + \Delta T)}{\frac{\dot{\omega}}{S}\beta(T_0) + T_0}$$
при $\frac{\Delta T}{T_0} < 1$ (29)

Давление насыщенных паров, как известно, в малом интервале температур имеет вид [3]:

$$P_0(T) = Ae^{-q/T}$$
 (30)

где A - зависит от внешнего давления. Заметим [1], в малом интервале температур q изменяется незначительно, и будем считать её постоянной $q=q(T_0)$. Взяв за опорную точку давление насыщенных паров при T_0 (которое находится по соответствующим таблицам), найдём

$$P_{0}(T) = Ae^{-q/T} = P_{H}(T_{0}) \exp - q \left(\frac{1}{T_{0}} - \frac{1}{T} \right) =$$

$$= P_{H}(T_{0}) \exp \frac{q\Delta T}{T_{0}^{2}}$$
(31)

где Δ T = T – T_0 , и в силу малости Δ T/T_0 мы заменили $T \cdot T_0 \to T_0^2$. С точностью до члена второго порядка малости по Δ T/T_0 в показателе экспо-

ненты
$$\frac{q\Delta T^2}{T_0^3}$$
 << 1. Из уравнения (25) найдём n ,

подставляем в него значение J из (8)

$$n = \frac{J_0 - (n + n^0) \Delta T C_V^{g\dot{0}} / S}{q^{\dot{0}} / S} =$$

$$= \widetilde{n} - (n + n^0) \frac{\Delta T}{T_0} \alpha$$
(32)

где $\widetilde{n} = \frac{J_0}{q^{\stackrel{.}{0}}/S}$ - плотность паров воды в камере,

если всё подводимое тепло J_{0} идёт на образование

пара;
$$\alpha = \frac{C_V^g T_0}{q} < 1$$
 — отношение теплосодержания в

паре при температуре T_0 к скрытой теплоте парообразования q при этой температуре. Из формулы (32) получим значение n :

$$n = \widetilde{n} - n^{0} \frac{\Delta T}{T_{0}} \alpha - n \frac{\Delta T}{T_{0}}$$

$$n = \frac{\widetilde{n} - n^{0} \frac{\Delta T}{T_{0}}}{1 + \frac{\Delta T}{T_{0}} \alpha} = \widetilde{n} - n^{0} \frac{\Delta T}{T_{0}} \alpha$$
(33)

так как $\frac{\Delta T}{T_0} \alpha << 1$ практически всегда выполняется, то $n \cong \widetilde{n}$. Подставляя значение n в (29) из (33),

получим уравнение для $\frac{\Delta T}{T_0}$. Мы подставили вме-

сто $T \to T_0$ в мало изменяющихся с температурой величинах:

$$\widetilde{n} = \frac{P_0(T_0 + \Delta T)}{\frac{\dot{\omega}}{S}\beta(T_0) + T_0} = \frac{P_0(T_0)e^{\frac{q\Delta T}{T_0^2}}}{\frac{\dot{\omega}}{S}\beta(T_0) + T_0}.(34)$$

Из (34) следует:

$$\frac{\Delta T}{T_0} = \frac{T_0}{q} \ln \left| \frac{1}{P_0(T_0)} \left[\frac{J_0}{q^{\frac{\dot{\alpha}}{N}} S} \left(\frac{\dot{\alpha}}{S} \frac{\sqrt{2\pi m T_0}}{(1 - \overline{R}(T_0))} + T_0 \right) \right] \right| . (35)$$

Так как отношение

$$\frac{\dot{\underline{\omega}}}{S} \sqrt{\frac{2\pi m}{T_0}} \approx \frac{\dot{\underline{\omega}}}{SV_T} <<1, \tag{36}$$

где V_T - тепловая скорость молекул воды в паре, то во всех формулах, где встречается выражение в скобках в правой части (35), можно оставить только T_0 . Тогда получаем

$$\frac{\Delta T}{T_0} = \frac{T_0}{q} \ell n \frac{\widetilde{n}}{n_H(T_0)},\tag{37}$$

где $n_H(T_0)$ = $\frac{P_0(T_0)}{T_0}$ - плотность насыщенных паров

при температуре T_0 .

Для потока испарения воды при окружающей температуре T_0 и температуре в камере $T = T_0 + \Delta T$ с единицы поверхности в единицу времени получим из (8):

$$J = \frac{J_0}{q} \left[1 - \frac{c_V T_0 T_0}{q} \ln \left\{ \frac{1}{P_0(T_0)} \left[\frac{J_0}{q^{\dot{0}} S} \left(\frac{\dot{0}}{S} \beta (T_0) + \frac{1}{T_0} \right) \right] \right\} \right] . (38)$$

Формулу для потока J (44) перепишем в более

удобном виде, используя $\widetilde{n} = \frac{J_0}{q_0^0/S}$. Выражения

(35,38) с хорошей точностью порядка $\frac{\dot{\omega}}{SV_T}$ < 1 при-

нимают наглядный вид:

$$\frac{\Delta T}{T_0} = \frac{T_0}{q} \ell n \frac{\widetilde{n}}{n_H(T_0)}; \tag{39}$$

$$J = \frac{J_0}{q} \left(1 - \frac{C_V T_0^2}{q^2} \ell n \frac{\widetilde{n}}{n_H(T_0)} \right); \tag{40}$$

Второй член в скобках (40) есть часть тепла ,которое идет на испарение воды. Отсюда видно, что при $\frac{\widetilde{n}}{n_H}$ < 1 доминирует работа насоса и охлаждается си-

стема. При $\frac{\widetilde{n}}{n_H} > 1$ доминирует нагреватель и проис-

ходит нагрев системы.

Отметим, что если имеется ещё облучение с экстинцией (поглощением), l - длина, на которой в e раз уменьшается поглощение энергии за единицу времени в воде, $I = I_0 e^{-x/l}$, I_0 имеет размерность энергия/см³с. Тогда плотность потока энергии для этого объёмного источника имеет вид:

$$\int_{0}^{\xi} J dx = I_{0} \int_{0}^{\xi} e^{-x/l} dx =$$

$$= I_{0} l \left(1 - e^{-\xi/l} \right) = \begin{cases} I_{0} l & \text{при } \xi/l >> 1 \\ I_{0} \xi & \text{при } \xi/l << 1 \end{cases}$$
(41)

Таким образом, если действует ещё и объёмный источник тепла, то его нужно добавить к J_0 :

$$J_{norm} = J_0 + I_0 l (1 - \exp(-\xi/l))$$
. (42)

Эти источники могут, естественно, действовать вместе или порознь.

Так как J_0 трудно измеряемая величина, то можно пользоваться формулой (35) для определения ΔT в стационарном режиме. При этом в формуле для ΔT все величины измеримы, кроме J_0 . В установившемся режиме, определяя плотность паров по разности полного давления и давления остаточного газа и применяя формулу для $n=\widetilde{n}$, можно также найти J_0 .

При отсутствии нагревателя процесс испарения будет происходить за счёт поглощения тепла из окружающей среды. Это соответствует тому, что

$$J_0$$
= 0 в уравнении (32). Учитывая, что $\frac{C_V^{\mathrm{g}} T_0}{q}$ << 1 ,

то из (32) с достаточной точностью мы получим значение n. Это выражение годится, когда

$$\widetilde{n} << -n^0 \frac{\Delta}{T} \frac{T C_V^g T_0}{q}$$
.

$$n = -n^0 \frac{\Delta T C_V^g T_0}{T_0 q}.$$
 (43).

Как и должно быть в этом случае ΔT будет отрицательным. Подставляя (43) в (29) получаем:

$$\frac{P_0(T_0)e^{q\Delta T/T_0^2}}{\frac{\dot{\omega}}{S}\beta(T_0) + T_0} = -n^0 \frac{\Delta T C_V^g T_0}{T_0 q}. \quad (44)$$

Полагая
$$-\frac{\Delta T q}{T_0 T_0} = x$$
, $x > 0$, $-\frac{\Delta T}{T_0} = \frac{x T_0}{q}$. Тогда (44)

можно переписать в виде уравнения для \mathcal{X} , используя (35):

$$e^{-x} = \gamma x$$
, $\gamma = \frac{n^0 T_0 C_V^g T_0}{n_H q q}$. (45)

1)
$$\gamma >> 1$$
, $e^{-x} = 1 - x = \gamma x$ $x = \frac{1}{1 + \gamma} \approx \frac{1}{\gamma}$;

2) $\gamma << 1$,. логарифмируя, найдём решение $-x = \ln \gamma + \ln x$ $x = \ln \frac{1}{\gamma} - \ln \ln \frac{1}{\gamma}$ с точностью

порядка
$$\frac{\ell n \ell n \frac{1}{\gamma}}{\ell n \frac{1}{\gamma}} < 1$$
.

Если $J_0 \neq 0$, $\dot{\omega} = 0$, тогда из (35) вытекает, что $\Delta T \to \infty$, т.е. происходит нагрев всей системы при отключении насоса в присутствии нагревателя.

Из теоретического рассмотрения следует, что минимальные энергозатраты будут, как видно из формул (39,40), при выполнении условия:

$$\frac{\widetilde{n}}{n_H(T_0)} = \frac{J_0 S T_0}{q \dot{\omega} P_H(T_0)} = 1$$
 (46)

При этом условии и Δ T = 0 . Это означает, что не будет подогрева или охлаждения отходящего от воды пара и газа. В первом случае при Δ T > 0 тратится добавочная энергия от нагревателя, во втором — при Δ T < 0 расходуется мощность насоса на охлаждение. В обоих случаях имеются добавочные энергозатраты. Остаются, конечно, паразитные энергозатраты (трение, теплопроводность стенок и т.д.). Заметим также, что определяя J_0 , можно определить коэффициент теплопередачи от мощности нагревателя I, которая известна, к подогреваемой воде:

$$\eta = \frac{J_0}{I} \,.$$
(47)

Введём коэффициент полезного действия насоса δ :

$$\delta = \frac{\dot{o} \Delta P}{R_H},\tag{48}$$

где ΔP - разность давлений окружающей среды и давления газа в камере. Следовательно, $\dot{\otimes} \Delta P$ - полезная работа насоса, R_H - мощность насоса. Используя (47) и (48) выразим (32) в виде:

$$\frac{\widetilde{n}}{n_H(T_0)} = \frac{\eta}{\delta} \frac{IS}{R_H} \frac{\Delta P}{P_H(T_0)} \frac{T_0}{q}.$$
 (49)

В нашем случае $\Delta P \approx P_H(T_0)$ (атмосферное давление). В (49) известны все величины, кроме коэффициентов η и δ .

В заключение отметим, что предложенный подход к испарению воды применим в основных чертах и к сушке органического сырья. Основной трудностью в этом случае является понимание механизма подвода воды к поверхности. Этому вопросу будет посвящено отдельное сообщение.

ЛИТЕРАТУРА

- 1. Л.Д.Ландау, Е.М.Лифшиц. *Статистическая* физика. М.: «Наука», 1964.
- 2. Кларк, Макчесни. *Динамика реальных газов*. М.: «Мир», 1967.
- 3. Л.Д.Ландау, Е.М.Лифшиц. *Механика сплошных сред*. М.: «Наука», 1953.

ДО ТЕОРІЇ ТЕРМОВАКУУМНОЇ СУШКИ

В.В. Сльозов, В.О. Кутовий, Л.І. Ніколайчук

Національний науковий центр «Харківський фізико-технічний інститут», Україна, 61108, м.Харків,вул. Академічна, 1 e-mail: nikl@kipt.kharkov.ua

Вакуумна сушка є ефективним способом звільнення від надлишкової води з різної сировини, у тому числі органічних матеріалів (харчової сировини і напівфабрикатів). Через велику кількість факторів, що впливають на режим вакуумної сушки, вибір оптимальних значень параметрів роботи сушильного агрегату представляється досить складним. У даній роботі теоретично досліджувалася кінетика випаровування вільної води в залежності від режимних параметрів сушки. Складена і розв'язана основна система рівнянь, що описують процес випаровування води з поверхні в стаціонарному випадку. Знайдено потік води, що випаровується з одиниці площі поверхні в одиницю часу.

TO THE THEORY OF THERMOVACUUM DRYING

V. V. Slyozov, V. A. Kutovoy, L. I. Nikolaichuk

National Science Center, "Kharkov Institute of Physics and Technology", 61108, Akademicheskaya, 1, Kharkov, Ukraine e-mail: nikl@kipt.kharkov.ua

Vacuum drying is the effective method of a surplus water release from various raw materials, including organic materials (food raw materials and halffimished products). In view of a great quantity of factors having influence on

the vacuum drying condition the choice of the best values the present work (paper) the free water evaporation kinetic ing parameters. The basic system of equations, describing been developed and solved. The evaporated water flow from	s was theoretically investigated depending on regime dry- g the water evaporation process in a stationary case has
₱₫просы атомной наууи и теуниуи 2002 ма	