GENERALIZED KRAMERS’ PROBLEM FOR LEVY PARTICLE
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We consider a generalization of the classical stochastic problem, namely, how to evaluate the mean escape time
and escape probability law of a macroscopic particle, being under the influence of the surrounding medium, from a
potential well (Kramers problem). The calculations are executed using the method of numerical integration of an
overdamped Langevin equation, in which the random force obeys Lévy stable probability law. The detailed descrip-
tion of the method is given, paying much attention to the correct Langevin equation time-quantization and to creat-
ing noise generator for the simulations. The mean escape times and escape probability density functions for the case
of a truncated harmonic potential and for the whole admitted region of Lévy indices o are evaluated.
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1. INTRODUCTION

Brownian motion of a macroscopic particle has be-
come a classical problem of physics. It has found nu-
merous applications in physics, astronomy, chemistry,
biology etc., see [1-3], therefore being a worth object
for theoretical challenges. One of the problems raised
by Brownian motion is the Kramers problem that is
evaluation of the mean escape time of a particle from
the potential well due to thermal impact of the sur-
rounding medium [2]. There are several approaches for
obtaining the mean escape time. For an overdamped
case the first one is solving the Langevin equation with
Gaussian white noise in the right-hand side:
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where x(7) is the particle’s coordinate, m its mass, y
a viscosity constant, U (x) is the potential, & (¢)is the
Gaussian white noise,

(& ()& (x))=D5 (1), @
D is the noise intensity, D =2k,T/my, k; is Boltz-

mann constant, 7 is the surrounding medium tempera-
ture.

Another approach, which allows not only a numeri-
cal solution, as the one above, is based on integrating
the Fokker-Planck equation.

Most well-known solving procedures are based on
the idea the potential barrier is high enough in compari-
son to the thermal fluctuations. They give the result in
dimensionless variables (see, e.g. [2]):
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and x,_, are the points where the potential
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has its maximum and minimum, respectively.
An approach that does not assume the barrier to be
high was proposed by A.N. Malakhov [4]. It is based on
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the solution of the Fokker-Planck equation using
Laplace transformation and defining the timescales for
the PDF. It gives
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Here [ll,lz] is the escape interval, that is the particle

needs 7, time to escape from it.

However, a number of experimental observations
discovered a violation of this law. Is it was revealed,
that is due to the non-Gaussian nature of the external

random force & /(). The probability distribution func-

tion (PDF) of that noise belongs to the class of so-called
a-stable, or Lévy, distributions. The peculiarity of these
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b

PDFs are the power-law asymptotics f (x) ocl/ |x

where o is the Lévy index. This means, that the Lévy
noise has strong “outliers” alongside with small Gaus-
sian-like noise. Even though due to this fact, the mean
squared displacement for Lévy motion diverges, such a
motion can be found in non-physical space (e.g. energy
diffusion), where no finite variance is required.

A generalization of the Kramers problem for the
case of external random force with Lévy PDF was pri-
marily studied in [5] for the particle in the quartic dou-
ble-well potential. Here we suggest the problem of a
particle in the truncated harmonic potential.

2. MAIN EQUATION
We start from the Langevin equation

dx__LdU(x)
dr my dx oo (1), %)

where o in &, () denotes the Lévy index. If we inte-

grate Eq. (5) by time within the limits [7;7+8¢], we get:
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t+31t
x(t+8t)—x(t)=—L dU(x)dt
my dx
(6)
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If we assume U (x) is a slowly changing function in

time:
1 dU(X) 1+8t
x(t+5t)—x(t):—m—y78t+ 't[ &, »(1)dt.(7)
149t

The value I &.p(f)dt=L,, is a Lévy process
t

with characteristic function

fop(k88)= [ exp(ikL, ) f (L, »,8t)dL, , = ©
= <exp(ikLa,D )> = exp(—D|k|(x St).
Let us introduce a Lévy process with unit noise in-
tensity:

foy (k,81) = <exp(ikLa’l )> - exp(—|k|a 5t), )

and find the relation between L, , and L, ,. Since

o

D>0 we can write D|k[ =|D”“k . Then, making

the change of variable D"k — k in Eq. (8) we get

<exp(ikD’”“La,D )> - exp(—|k|“ St). (10)
Then, comparing Egs. (9) and (10) we find
L, ,=D"L,,. (11)
Now our Langevin equation (7) reads as
du
x(1+81)-x(t)= —Lﬂ&
my dx
(12)
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where &, (¢) is Lévy noise with a unit intensity.

Now, let us pass to the dimensionless variables. To
do this it is necessary to specify the potential U (x) .In

the paper we will dwell on the potential

2

X
a—, x|<b, a,b>0;
U(x)=1"2 | | (13)
0, otherwise.
Making the substitutions x—x%, >,
D — DD in Eq. (12) we get:
EA.3
D a
dU
x(t+481)—-x(t)=— (X)St
dx

1431t
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t
Next, let us obtain the time-discrete Langevin equa-

tion. That is, the noise should depend on the number of
time step. We will write such a discrete noise as
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variable

& (1) Eq. (9)
((St)w k —)k) similarly to the variable change per-

Making change in

formed above with Eq. (8), and taking into account
1+31t

.[ &, (1)dt'=¢,  (n), we get:

. = _dU_(x)g;H(DSt)”“ &, (1),

i — %, I (14)

or, substituting the potential (13)
X, —X, z—xn8t+(D8t)l/u €. (n). (15)
The numerical generator producing the set

{&w (n)} can be taken from [6]. The authors suggest

calculating the value

Yo sin(ocy)1 [cos((l—a)Y)J(l_%
(costr)) L ¥

where vy

; (16)

is a uniformly distributed on the range
(—%;%j random value; W is an independent random

value possessing exponential PDF with mean equal
unity; o is the Lévy index, 0 <o < 2.

To prove that such a value X will possess a Lévy
PDF we will firstly consider the case 0 <o <1. When
y >0, Eq. (16) can be written as

(2]

W (17)
where
1 %lfa)
a(y)=[sézz;yj cos((1-a)y). (18)
Then
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The received expression, according to [7] is an inte-
gral representation of the Lévy PDF.

When 1<a <2 the proof is analogous to that pre-
sented above. In the case o =1 the expression for X

transforms into X =tg(y) that is a random variable



with Cauchy PDF. The case y <0 just gives the nega-

tive values of X .

The noise, produced with such generator, is depicted
in Fig. 1. It is seen, that the less the Lévy index is, the
larger and thicker the “outliers” become. Fig. 2 repre-
sents the comparison of the Lévy PDFs with
a =1,1.3,1.6,1.8 and 2. As one can notice, Lévy PDFs

possess long power-law tails.
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Fig. 1. Lévy noise with different o (downwards
o =1.0,1.5,1.8,2.0 ). The less the Lévy index is, the lar-

ger the “outliers” become
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Fig. 2. Comparison of Lévy PDFs with different in-
dices o . For o <2 there are power-law asymptotics

3. NUMERICAL SIMULATION

Now let us describe the numerical simulation of
Kramers problem. We start from the time-discretized
Langevin equation (15) obtained in the previous sec-
tion. The simulation algorithm is as follows:

1.  We place a "particle" into the potential's mini-
mumx=0.

2.  Fixing alpha we make the iterations of Eq. (15)
for D's ranging from 10~ to 10°, with the time-step
8t=107;

3. The iterations for current D stop when the
particle reaches a border of the potential (x=+1) and
the needed time is denoted;

4. For each D we do the calculations 10000
times, and then average.

The results of these iterations are shown in Fig. 3 in
lg-lg scale. As one can see the curves for o # 2 have
power-law asymptotics at small D's. At large D's the
curves in Fig. 3 tend to g7 =-2, in fact evaluating

esc

T =04t, since the particle here needs only one step to

esc

exit the well. The numerical simulation data for o =2
is fitted using formula (4) (a solid bold line in the
Fig. 3). To examine the asymptotic power-law depend-
ence we introduce the following formula:
Cla
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Fig. 3. Simulation results for the truncated har-
monic potential (Ig-lg scale). In contrast with the Gaus-
sian case (o =2) the curves with o #2 possess
power-law asymptotics

The values C(a) and p(o) can be easily found
numerically from the data plotted in Fig. 3. Indeed, fit-
ting the dependencies for small D's in Ig-lg scale with a
straight line by using the least-squared method, we ob-
tain them instantly from the equation for this line:

g7, =-p(a)-lgD+1gC(a).
Then, building the curves for the exponent p (o)

and prefactor C(a) as functions of Lévy index (see

Fig. 4), we discover they are monotonic functions.
Moreover, the value p(a) exhibits a step-like behav-

ior, being almost constant at o's not very close to 2
and tending to infinity while a — 2. The latter is a
natural result, since there are no power-law asymptotics
for the Gaussian case.
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Fig. 4. Exponent p((x) and prefactor C ((x) for

small values of noise intensity D

Next, we are interested in obtaining the escape PDF
of the particle as the function of walking time. We fix
D at the value D =10". The simulation algorithm is
almost the same, except the fact that the values of time
escape are not averaged, but treated with a routine that
builds their PDF. The results of these calculations are
shown in Fig. 5. In spite of the different nature of the
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noise, the PDFs for the Lévy case, like these for the
Gaussian case, show an exponential behavior

p(1)=——exp(—1/T,.).

esc

(20)

where p(¢) is the escape probability density function.
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Fig. 5. Escape PDF for Lévy case. As for the Gaus-
sian case (o. =2 ), they exhibit exponential behavior

Thus, using Eq. (20) we can obtain the mean escape
times:

A table showing the comparison of the escape times
obtained using Egs. (21), (22) and the direct simulation
is available below. As one can see, the difference be-
tween the corresponding values does not exceed 2.5%.

4. CONCLUSION

The results of this paper show that in contrast with
the classical Kramers’ problem for Gaussian noise, the
mean escape time has power-law asymptotics at small
values of D, remaining a monotonic function of the
Lévy index. However, the escape PDFs for different
a's still are exponential.

REFERENCES

S. Chandrasekhar //Rev. Mod. Phys. 1943, v. 15.

P. Hianggi et. al. Reaction-rate theory: fifty years
after Kramers //Reviews of Modern Physics. 1990,
v. 62, p. 251-342.

3. C. Bustamante. Grabbing the cat by the tail: manipu-

s

__ _7 @1) lating molecules one by one //Nature Reviews .
“ p(0) " 2000, v. 1, p. 130-136.
or 4. AN. Malakhov. Time scales of overdamped nonlin-
. ear Brownian motion in arbitrary potential profiles
din(p(r))) /IChaos 1997, v. 7(3), p. 488-504.
we = dt =T (22) 5. A.V.Chechkin, V.Yu. Gonchar, J.Klafter and
R. Metzler. Barrier crossing of a Lévy flight //Euro-
Comparison of the escape times obtained using phys. Lett. 2005, v. 72, p. 348-354.
the escape PDF’s and via the direct simulation 6. JM. Chambers et. al. A Method for Simulating Sta-
o T T T, ble Random Variables //Journal of the American
= Statistical Association. 1976, v. 71, p. 340-344.
0.1 108.2 107.1 107.9 7. V.M. Zolotarev. One-dimensional stable distribu-
0.5 127.4 125.4 126.8 tions. M.: “Mir”, 1983, 187 p. (in Russian).
1.0 159.1 155.7 156.7
1.5 250.2 244.6 245.9

OBOBLIEHHAS 3AJIAYA KPAMEPCA JUIS1 JIEBU-YACTHUIbI
A.FO. Cnrwocapenxo, A.B. Yeukun

PaccmoTtpeno 00001eHe OJJHOM N3 THITOBBIX CTOXAaCTHYECKHX 33/1a4 — 3a/]1aya O IOJyYeHUH CPEJHEr0 BpEMEHU
BbUIETa U (DYHKIMHU paclpeeeHHs] BBUICTOB MAaKPOCKOIIMYECKOH YaCTUIIBI U3 MOTCHIMAIBHOM SIMBI IO/ ACHCTBHEM
OKpy’Karomien ee cpersl (3amaga Kpamepca). 31eck MBI ocTaHaBIMBaeMCs Ha ciydae 0Ope3aHHOTO TapMOHHYECKOTO
NOTeHIAa1a. BIUMCICHUS IPOU3BOASATCS METOJIOM YHCIEHHOTO MHTETPUPOBAHUS NepeieMII(hupOBaHHOTO ypaBHe-
Hust JlamkeBeHa, B KOTOPOM cilydaiiHasi cuiia o0JiaiaeT 3akoHOM pacnpenenenns JleBu. JlaHo peranbHOE onycaHne
CaMoro MeTo/ia, IpH4eM 0co00e BHUMaHUE 0OpaIleHO Ha IPAaBUIIBHYIO JTUCKPETH3ALNI0 YpaBHeHHs JlaHKeBeHa BO
BPEMEHH H IIOCTPOCHUE I'eHepaTopa IIyMa JUIsl YHCICHHOTO MOJeInpoBaHus. [1omydeHsl cpeaHe BpeMeHa BblIeTa
U uX (QYHKIMH pacrpe/esieHus Ui Bcel o0nacTi 3HaueHuid mapamerpa Jlesu.

Y3ATAJIBHEHA 3ATAYA KPAMEPCA U151 YACTUHKU JIEBI
O.10. Cnrocapenko, O.B. Yeukin

Po3risiHyTO y3arajgbHEHHS OHIET 13 THIIOBUX CTOXaCTHYHMX 3aj]ad — 3ajada po OTPUMaHHS CEPEAHBOTO Yacy
BHJIHOTY Ta (YHKIIIi PO3MOALTY BIIBOTIB MAKPOCKOIIIYHOT YACTHHKH 13 TOTSHIIATBHOT SIMH ITiJ] Ti€I0 ii OTOUYIOYOTO
cepenoBuma (3agada Kpamepca). Mu 3ynuHseMocs Ha BUIIAAKY 00pi3aHOTO TapMOHIYHOTO MoTeHniana. O0uucieH-
HSl BUKOHYIOTHCSI METO/IOM YHMCENILHOTO IHTEerpyBaHHs nepenemiipoBaHOro piBHsIHHS JlaHkeBeHa, B SKOMY BHIIa[l-
KOBa CHJIa Mae 3aKoH posnoziny Jlesi. Hagano neranpHuii onmc caMmoro MeToay, npudomMy ocoba yBara mpuaijeHa
BipHIH AuckpeTn3anii piBHIHHES JlaHkeBeHa y yaci Ta TOOyIOBi reHepaTopa MIyMy AJIsl YHCEITBHOTO MOJCITIOBaHHS.
OTpumaHO cepenHi 9acu BIIBOTY Ta iX (YHKIIIT po3nmoairy Ut Beiel obmacTi 3Ha4eHp napamerpa Jlesi.
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