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We solve the one-dimensional problem of quasiparticles’ transfer through the interface between a solid and su-
perfluid helium. Superfluid helium is treated as a continuous medium with correlations. When a solid’s phonon is
incident on the interface, phonons, R™ and R'rotons are created in helium, and their creation probabilities are ob-
tained. When a quasiparticle of superfluid helium is incident, it can be reflected as any one of the three quasiparti-
cles, and the corresponding probabilities are derived. The R rotons creation and detection probability are both
shown to be small, and this explains why they could not be detected experimentally for a long time.

PACS: 67.40.Bz, 67.40.Hf, 67.40.Pm, 67.57.Np.

1. INTRODUCTION
The dispersion curve of superfluid helium Q(k) was

first sketched by L. D. Landau, and later it was meas-
ured in various experiments, particularly on neutron
scattering in helium. The curve has a specific form: it is
almost linear at small wave vectors £, then reaches the
maximum called the “maxnon maximum”, goes down to
the “roton minimum”, then goes up again, and finally
becomes unstable. The quasiparticles that populate the
mostly linear part of the curve are called phonons, R™
rotons are on the downward section left from the mini-
mum, and R'rotons are to the right from the minimum.
The R rotons are quasiparticles with negative dispersion
dQ/dk <0, i.e. they propagate in the direction opposite

to the one of the momentum they carry. However, for a
long time they could not be detected in direct experi-
ments, such as the experiments on creating beams of
quasiparticles in superfluid helium by a solid heater [1].
The first time they were registered was in 1999, when
the experimental group of A.F.G. Wyatt used a special
cunningly constructed source to create them and detec-
tion was achieved by means of quantum evaporation
[2]. This event made relevant some questions regarding
Rrotons, in particular the explanation of the failures to
detect them earlier became necessary.

In order to describe rotons and phonons in a unified
way, a model of quantum fluid was proposed [3], in
which it is treated as a continuous medium with correla-
tions. This theory is based on the fact that the thermal de
Broglie wavelength of a particle of a quantum fluid ex-
ceeds the average interatomic separation. Then the vari-
ables of the continuous medium can be assigned values
in each mathematical point of space in the probabilistic
sense, but the relations between them become nonlocal.
This nonlocality allows one to describe a continuous
medium with an arbitrary dispersion relation. The qua-
siparticles are described then as wave packets propagat-
ing in the medium.

In a series of papers [4-6] the theory built in [3] was
applied to solve the problem of waves’ transmission
through the interface between a solid and a quantum
fluid, for the case when the dispersion relation of the
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latter is nonlinear. The considered dispersion relation
was the one of BEC in the approximation of point-like
interaction [7], which is essentially nonlinear, though
monotonic. The problem was solved in full, and the
reflection and transmission coefficients were derived as
functions of the incidence angle and frequency.

In the present work we consider the same problem
with the dispersion relation of the form that approxi-
mates well the specific dispersion curve of superfluid
helium with its phonons and rotons. We solve the prob-
lem of any quasiparticle incident on the interface from
either side in the one-dimensional case. This includes
creation and reflection of rotons on the interace.

Section 1 contains derivation of the solutions of the
equations describing the quantum fluid with the taken
dispersion relation in the half-space. The problem of a
solid’s phonon incident on the interface is solved in
section 2. The probabilities of creation of either the re-
flected phonon or the phonon or R roton or R'roton in
superfluid helium are obtained as the corresponding
reflection and transmission coefficients for wave pack-
ets. The second part of this problem, when one of the
quasiparticles of superfluid helium is incident on the
interface, is solved in section 3. The probabilities of
each quasiparticle creation are obtained. It is shown that
the total reflection probability of an R'roton is close to
unity, while its creation probability on the interface is
very small compared to the other quasiparticles’ of su-
perfluid helium. This makes the detection by a solid
detector of Rrotons created by a solid heater almost
impossible, and explains why they were not detected
until 1999.

The results are also important for classical acoustics,
as an example of solution of the problem of creating
multiple waves lying on the same non-monotonic dis-
persion curve.

2. QUANTUM FLUID WITH ROTON-LIKE
DISPERSION RELATION

In the model of quantum fluid built in [3] it is de-
scribed by the linearized equations of ideal liquid with
nonlocal relation between pressure and density. In the
one-dimensional case, when the fluid fills the half-line
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x>0, the problem in terms of pressure P can be

brought to the form
*P(x,t) T, N 02P(x',1)
T = !dx h(x—x )T,

xXe (0,00), te (— %0,0),

M

The Fourier transform of the kernel /(x) is related
with the dispersion relation of the quantum fluid [3]
(k)

e

In this work we consider the dispersion relation of

the form

2(1)_ 272 k_2 E
Q(k)—sk{1+k§[21+k2]}. 3)

g

h(k) = (©))

Here s is the sound velocity at zero frequency; k,
is the quantity that defines the scale of wave vectors on
which Q(k) becomes essentially nonlinear; parameter
A determines the form of the dispersion curve. The
values A < -1 give negative Q’ (k) for a range of wave
vectors and therefore are not physically relevant;
A>—y3/2 provide monotonic function Q*(k) that
does not differ in principle from the relation already
considered in [6]. In the interval ie(—l,—\/g / 2) the

dispersion curve is non-monotonic, with the “maxnon”
maximum @, and the “roton” minimum @, ,, and the

max rot 2
value of 4=-0,98 gives good approximation of the
dispersion relation of superfluid helium (see Fig.1).
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Fig. 1. The curves Q(k) for A=-1 (dashed),

A =-0.98 (thick solid) and A = —\/§/2 (dash-dotted).
The roton minimum @, and maxnon maximum o,

rot max

are shown for 1 =-0.98

In this paper we restrict our consideration to the last
case, that is most interesting, and to frequencies
welw,, o,, ). In this interval all the six roots Tk 55

rot

of dispersion equation
O’ (k)=0’, )
are real and can be put in the order 0<k’ <k, <k; .

Then k, corresponds to a superfluid helium’s phonon,
k, to R'roton and &, to R'roton.

The kernel h(x) that corresponds to the dispersion
relation (3) is obtained from (2) and (3):

)= explt, )+ - expl-ik ). ®
Here
ik, Kk
T ©

and k, are the poles of 4(k), that in the considered case
Ae (—l,—\/g/Z) can be written as

ke =k, WTI= 2 £iNT+ 2 )42 | %

The problem (1) was solved by Wiener-Hopf
method in [5] for Q° (kz) of polynomial form, and the

solutions were shown to be sums of waves that corre-
spond to all the roots of dispersion equation (4) in the
complex k plane. Therefore we can search for solutions
of (1) with the kernel %(x) from (5) in the form

P(xt)= Z a, explikx—icot). ®)

Substituting (7) and (5) into (1), we obtain that all
the k, of (8) really have to be the roots of equation (4),

and the amplitudes of the waves ¢, satisty the two
equalities

Q; _
Zk,.—k+ -

i

ai
0, Z,.:k,.+k, 0. 9)

The number of waves in the solution (8) can be up to
six. However, when we solve a definite problem of
waves’ transmission through the interface, the given
asymptotes of the solution at infinity force some of the
amplitudes to be equal to zero. Then the boundary con-
ditions stated on the interface, together with equations
(9), provide enough equations for the problem to be
solved in full.

3. CREATION OF PHONONS
AND ROTONS OF SUPERFLUID HELIUM
BY A SOLID’S PHONONS

Let there be an interface x =0 between a solid and
the quantum fluid dispersion relation (3) and let a pho-
non of the solid be incident on the interface. The solid
with density p,, and sound velocity s, occupies the
half-space x <0, and is described as an ordinary con-
tinuous medium. The quantum fluid with density p,

and dispersion relation (3) fills the region x>0, and is
treated as a continuous medium with correlations (1).
Quasiparticles of energy 7w are wave packets propa-
gating in corresponding media with the carrier fre-
quency @ . It can be shown (see for example [5]), that
the wave packet’s interaction with the interface can be
described in the first approximation as that of a plane
wave with the carrier frequency. All the transmission
and reflection coefficients are obtained then as those
quantities for plane waves.

In the problem formulated for plane waves, the solu-
tion in the solid is known to consist of the incident and
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reflected waves. The solution in the quantum fluid can
consist only of waves that are constitutuents of wave
packets traveling away from the interface, i.e. with
dQ/dk >0, so there is only one of each pair

tky,tk,, %k, . We define the signs of roots &, of (4)

for them to be the wave vectors of this solution. As R”
rotons have negative dispersion, the R roton wave of the
out-solution has negative wave vector k, <0, and the

roots are put in order as
0<k <—ky<k;. (10)

With the help of relations (9) we can put down this
“out-solution” in the form with a single “amplitude”
= 5 (s (b =k Nk, + k)
P, (x,0)=P,, (0)> St At =
out (x ) ou ( )E—H(W

J#i

exp(ik,.x - ia)t) (11)

The hydrodynamic velocity is found from (11) and
the linearized equations of ideal liquid

3
V. (x.t)= Mz k, ek Nk + £ ) explikx —iot)-(12)
Po@ i1 H (ki —k; j
J#i

The three plane waves in (11) and (12) correspond to
the phonon, Rroton and R'roton wave packets that
travel away from the solid, R roton having momentum
hk, directed towards the interface.

The two boundary conditions, that demand continu-
ity of pressure and velocity on the interface, sew to-
gether the solutions in the quantum fluid (11), (12) and
in the solid. Then the amplitudes of the reflected and
transmitted waves are expressed in terms of the ampli-
tude of the incident wave. The reflection coefficient,
defined as the ratio of pressures in the reflected and in-
cident waves, is obtained

 Zyy— [ +i

r = .
Zyy+ f—iA

(13)

Here Z, is the impedance of the interface at zero
frequency, y is dimensionless frequency, A is a con-

stant, ]7 is a construction of wave vectors £, , that

can be shown to be the function of only y and A :

Z, —&i; ;(:%; A:,/2(l+/1);

_pxol Ssol Sg
= fs

n=37 (14)
£y =k ey —ky )+ k5 (key — Ky )+ e (ky — Ky ),

n=23.

When the solid’s phonon is incident on the interface,
it is either reflected with certain probability, or one of
the three possible quasiparticles is created in the super-
fluid helium. The probability of the phonon’s reflection
is equal to the reflected fraction of the incident wave’s

energy density |rﬁ|2 in the problem formulated in terms

of plane waves. The energy transmission coefficient is
the fraction of energy density that is transferred through

the interface p~ = 1—|;;|2 , so from (13) we have
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It is the creation probability of either a phonon or an
R'roton or an R roton. The creation probability of each
of them is the corresponding partial transmission coeffi-
cient — the fraction of the energy of the incident wave
that is carried from the boundary by each of the three
waves of superfluid helium.

The energy fractions are proportional to the energy
density fluxes in each wave packet (not energy densi-
ties, as the packets differ in length due to difference in
group velocities) when they all are far enough from the
interface to be spatially separated. It was shown in [8]
for the quantities averaged that over quick oscillations,
the energy density flux in a wave packet (O, is equal to

(15)

O, =u,e,, where ¢, is the energy density and u, is the
group velocity of the wave packet. The energy density
in a wave packet can be brought to the form
g = p V7 /2 [5], where V; is the amplitude of hydro-
dynamic velocity. The relative amplitudes of velocities
in the three wave packets, as well as in plane waves, are
given by (12), and the group velocities are obtained
from the dispersion relation (3), so the energy fluxes in
the wave packets can be shown to be proportional to the
coefficients

é.':i = ki (ki2 - kf sz? - kkz ij - kk)z’

where (7, /,k) = (1,2,3),(2,3,1),(3,1,2)

(16)

Then the partial transmission coefficients D;” for
i=12,3 are equal to

pre— b _p
S+&+e;s
The structure of coefficients (16), together with

inequalities (10), leads to the fact that &, < 51,3 for

all frequencies. Also we can see that near to the roton
minimum (k2 + k3) ~Jo-o,, is a small parameter,
so & and &, also tend to zero as Jw—w,, . In the

same way &, and & tend to zero as /@,, —® in the

neighborhood of maxnon maximum. So one can say
that these two asymptotes of éz(a)) at the ends of the

(17)

interval of frequencies, in which Rrotons exist, pull
the Rroton creation possibility curve to zero. The
qualitatively described behavior of the partial trans-
mission coefficients is well reflected by numerical

evaluation of the curves D;”(y) for different parame-
ters Z, and A. Fig. 2 shows the partial and total
transmission  coefficients for A4=-098 and
Z,=0.01, which is common impedance for a bound-
ary between superfluid helium and a solid.

The smallness of D, (;() compared even to

D™(y), which is small by itself for the considered
impedances, means that R rotons are barely created



in the experiments on creation of beams of quasipar-
ticles of superfluid helium by a solid heater.

Orot O

Fig. 2. The total transmission coefficient D™ for a
phonon incident on the interface from the solid (thick

solid curve) and partial transmission coefficients D,”,
equal to creation probabilities of the phonon D,”

(dashed), R roton D" (dash-dotted) and R roton D;’
(dotted), as functions of frequency. Here A =-0.98,
Z,=0.01

4. REFLECTION OF PHONONS
AND ROTONS FROM THE INTERFACE

Now let us consider the problem when one of the
quasiparticles of superfluid helium is incident on the
interface with a solid. The solution in the solid is just
one transferred wave. About the solution in the quantum
fluid we know that there is only one wave that corre-
sponds to the wave packet traveling towards the inter-
face. Together with the wave packets traveling away
from the interface there are four waves in the solution.
Taking into account the two relations between the am-
plitudes (9), there are two free amplitudes. We take the
already considered out-solution (11) as the first of the
two linear-independent solutions, that constitute the full
solution in the quantum fluid with the given asymptotes
at infinity.

The second one is built this way: if, for example, a
phonon (wave 1) is incident, we constitute the solution
of waves with wave vectors (— kl), k, and k;, with the

amplitudes related through Eqgs. (9). This way the linear
combination of the in- and out-solutions gives the full
solution in the quantum fluid when the incident qua-
siparticle is phonon, and consists of waves that give a
phonon wave packet traveling towards the interface and
three wave packets traveling away from it. The three
sorts of in-solutions, corresponding to the type of the
incident wave, can be written in the form

P! (x,1)= Pout(x,t]k L n=123.

in (18)

The two boundary conditions provide two relations
between the amplitudes of in- and out-solutions and the
transmitted wave in the solid. Then the relative ampli-
tudes of all the constituent waves are calculated with the
use of (11) and (18). The energy fluxes are obtained in
the same way as in the previous section.

When an i -th wave packet of superfluid helium is
incident on the interface, all the three waves are re-

flected. We denote the fraction of the energy of the in-
cident wave packet that is carried by the j -th reflected

wave as R, for i, j =1,2,3. It is shown that
i i) P i)2
(kS92 1)+ wR2 7Y
U k fZox + S+ NRS

Here fff) are modified combinations of wave vec-

(19)

tors k, ,;, that are equal to f, from (14) in which one
of the three wave vectors enters with the opposite sign:
1= flkkkd,

For i#j R, =R, and the expressions for them are
obtained from the expression for R, by cyclic permuta-

tion of subscripts in R, , k; and u; :
(Z();(+17c3/kg)2 +A
(kngZOZ + f3)z + A2k§f22

In terms of quasiparticles the quantity R; gives the

2 6k§ U,
RIZ 24}[ kgk—z—
3

.(20)

N

probability the quasiparticle of type i is reflected as
type j, i.e. the probability that when a quasiparticle of

type i is incident on the interface, the quasiparticle of
type j is reflected, so R; can be called conversion
coefficients. The probability that the quasiparticle i is
reflected is R, =) R,

, » the probability it is transmitted
is its energy transmission coefficient D~ =1-R,.

When all types of quasiparticles coexist in the quantum
fluid in equilibrium, the fraction of the total energy flux
incident on the interface, that is transmitted into the

solid, can be shown to be equal to D = ZjDﬁ , and

thermodynamic equilibrium between the two media at

equal temperatures demands that D~ =D . This
equality can be checked in a straightforward way by
simple, though a little cumbersome, calculations.

In the neighborhood of the roton minimum @ =~ w,,,

the small parameters are u,; ~ (k2 + k3)~ Jo-o,, ,
and the asymptotic behavior of conversion coefficients

is obtained by direct substitution into fi(;) and then (19)
and (20):
Ryy =0(1),
Ry 33 =0(0— @),
Riz13 = O(\/a) — @y )
R23 =1- O(ﬂ W — Wy )
In the neighborhood of the maxnon maximum

U, ~ (k2 +k1)~ \J®,.. —® and we obtain in the same

way
Ry3 =0(1),
Ry1 27 = O(0pex — @),
R3137 = 0( Omax —a))
R, =1 —O( Omax —a)).

21

(22)
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The asymptotes (21) and (22) give us full qualitative
description of R; behavior on frequency. In particular,

the last equality of (21) means that when an R roton
with frequency close to the roton minimum is incident,
it is almost always reflected as R 'roton, and vice versa.
The last equality of (22) means that when an R roton
with frequency near to the maxnon maximum is inci-
dent, it is almost always reflected as phonon, and vice
versa. The asymptotic behavior of the conversion coef-
ficients R; is illustrated by Fig. 3, in which the curves

R; () are shown for the same parameters as in Fig. 2,
A=-098 and Z;=0.01.

kil

13

— ()]

O) max

(Dml
Fig. 3. R(®) for A=-0.98 and Z,=0.01. The
curves are denoted by the corresponding pairs of sub-
scripts. R, and R,, are cloze but not equal to unity at
a)mt,max

ture’s scale just does not let us see the finite difference

because of the small impedance, and the pic-

The total probability that Rroton is reflected is
R, =R,, +R,, + R,;, and so it tends to unity at both

ends of the interval w e (a) wmax) . These two asymp-

rot >
totes pull to zero the curve of R roton detection prob-

ability D; , which is equal to 1- R, , in the same way
as D, in the previous section. Moreover, the depend-
ences D () are qualitatively the same as of D (w),
so the transmission coefficient for Rrotons D, is
much less than the ones for phonos D~ and R'rotons

Dy (see Fig. 2). This means that R rotons are very

poorly detected by solid detectors, in comparison to
phonons and R'rotons. Put together with their small
creation probability, it makes detection of Rrotons
in the experiments on creating beams of quasiparti-
cles of superfluid helium by a solid heater almost
impossible. This is the reason they could not be di-
rectly detected until 1999, when the experimental
group of A.F.G. Wyatt used a special source and R™
rotons were finally registered by means of quantum
evaporation [2].

5. CONCLUSIONS

In this paper we considered the one-dimensional
problem of quasiparticles’ transfer through the interface
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between a solid and superfluid helium. This problem
can be also formulated in terms of wave packets or
plane waves. The dispersion relation of superfluid he-

lium is non-monotonic, so there are multiple roots of

2

dispersion equation Q?(k)=w’. The quasiparticles

corresponding to these roots 0 < |k1| <|k2| <|k3|, in as-
cending order of wave vectors, are phonons, R rotons
and R'rotons. Creation probalilities of quasiparticles of
each type D,” by a solid’s phonon are obtained (17).
The probabilities R, that a quasiparticle of type j is

reflected when a quasiparticle of type i is incident on
the interface are derived (18), (19). The R rotons crea-
tion D,” and detection D; probability are both shown

to be small, and this explains why they could not be
detected until the experiments [2].
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POXIEHUE POTOHOB CBEPXTEKYYEI'O I'EJIUAA ®OHOHAMMU TBEPJIOI'O TEJIA,
HAJAIOINUMU HOPMAJIBHO HA TPAHUILY

H.H. Aoamenxo, K.3. Hemuenko, H.B. Tanamapoe

Msl pemraeM OZHOMEPHYIO 3a/laduy O MPOXOXKJIECHUM KBa3sHUACTHI[ Yepe3 IpaHHIly MEXAY TBEpAbIM TeIOM U
CBEpXTEeKy4uM renueM. CBepXTEKyuHil el OMUChIBAaeTCA KakK CIUIOIIHAs cpena ¢ Koppemnsuusamu. IloxydeHs! Be-
POATHOCTH TOTO, 4TO (POHOH TBEPOTO Teja IpPH TajeHUH Ha FPaHHUIy poxkaaeT GoHoH, R um R'poTon ceepxTe-
Kydero renusi. Takke BbIYHCICHBI BEPOSATHOCTH, C KOTOPBIMU OTPAXKaeTCsl OJ{HA U3 TPEX BO3MOXKHBIX KBA3UYACTHIL
IIpU NaJ€HUH Ha TPAaHUIly 33JaHHON KBa3UMYAaCTUIIbI CBEpXTEKyUdero renus. Iloka3aHo, 4To BEpOATHOCTU POXKACHUS U
peructpammu R poToHa Maiibl, ¥, TAKMM 00pa3oM, 1aHO OOBSICHEHHE TOMY, YTO B TEUEHHE JI0JITOr0 BPEMEHN OHH HE
OBUTH SKCIIEPUMEHTAILHO 3aPETUCTPUPOBAHBI.

HAPOJKEHHSA POTOHOB HAAIIJIMHHOI'O I'EJITIO ®OHOHAMMU TBEPJOI'O TLIIA,
1O MAJAIOTb HOPMAJIBHO HA T'PAHUIIIO

LH. Aoamenxo, K.E. Hemuenko, 1. B. Tanamapos

Mu po3B’si3a)I1 OJJHOBHMIPHY 3aJiauy PO MPOXO/KEHHS KBa314aCTUHOK Yepe3 IPaHHIII0 MK TBEPAMM TLIOM Ta
HaJIIUIMHHUM restieM. HaanimuHHMIA reftiif onucyeThes SIK CyHUIbHE CepeaoBHIE 13 KopemsuismMu. OTpuMaHo HMOBI-
PHOCTI TOTO, 110 (POHOH TBEPOTO Tijla MPH MAiHHI HA FPAHHIII0 HAPOKYE GoHOH, R a60 R” poTOHH HaIMIHHHOTO
reniro. Takoxx 00umcIeHo HMOBIPHOCTI, 3 SIKUMHU BiIOMBAETHCS O/IHA 3 TPHOX MOXIIMBHX KBa31YaCTHHOK ITPHU MaiHHI
Ha TPAHUITIO 33aHO] KBa3i9YaCTHHKY HAIIUTMHHOTO remito. [lokasano, mo WMOBIpHOCTI HAPOHKEHHS i peecTpartii R™
POTOHY Malli, i, TAKHM YHHOM, JIQHO MOSICHEHHS TOMY, IO IPOTSIFOM JOBIOI'0 Yacy BOHHU He OyJM eKCIepUMEHTallb-
HO 3apPEECTPOBAHI.
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