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We solve the one-dimensional problem of quasiparticles’ transfer through the interface between a solid and su-
perfluid helium. Superfluid helium is treated as a continuous medium with correlations. When a solid’s phonon is 
incident on the interface, phonons, R– and R+rotons are created in helium, and their creation probabilities are ob-
tained. When a quasiparticle of superfluid helium is incident, it can be reflected as any one of the three quasiparti-
cles, and the corresponding probabilities are derived. The R– rotons creation and detection probability are both 
shown to be small, and this explains why they could not be detected experimentally for a long time. 
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1. INTRODUCTION 
The dispersion curve of superfluid helium  was 

first sketched by L. D. Landau, and later it was meas-
ured in various experiments, particularly on neutron 
scattering in helium. The curve has a specific form: it is 
almost linear at small wave vectors , then reaches the 
maximum called the “maxnon maximum”, goes down to 
the “roton minimum”, then goes up again, and finally 
becomes unstable. The quasiparticles that populate the 
mostly linear part of the curve are called phonons, R

( )kΩ

k

–

rotons are on the downward section left from the mini-
mum, and R+rotons are to the right from the minimum. 
The R–rotons are quasiparticles with negative dispersion 

0<Ω dkd , i.e. they propagate in the direction opposite 
to the one of the momentum they carry. However, for a 
long time they could not be detected in direct experi-
ments, such as the experiments on creating beams of 
quasiparticles in superfluid helium by a solid heater [1]. 
The first time they were registered was in 1999, when 
the experimental group of A.F.G. Wyatt used a special 
cunningly constructed source to create them and detec-
tion was achieved by means of quantum evaporation 
[2]. This event made relevant some questions regarding 
R–rotons, in particular the explanation of the failures to 
detect them earlier became necessary. 

In order to describe rotons and phonons in a unified 
way, a model of quantum fluid was proposed [3], in 
which it is treated as a continuous medium with correla-
tions. This theory is based on the fact that the thermal de 
Broglie wavelength of a particle of a quantum fluid ex-
ceeds the average interatomic separation. Then the vari-
ables of the continuous medium can be assigned values 
in each mathematical point of space in the probabilistic 
sense, but the relations between them become nonlocal. 
This nonlocality allows one to describe a continuous 
medium with an arbitrary dispersion relation. The qua-
siparticles are described then as wave packets propagat-
ing in the medium. 

In a series of papers [4-6] the theory built in [3] was 
applied to solve the problem of waves’ transmission 
through the interface between a solid and a quantum 
fluid, for the case when the dispersion relation of the 

latter is nonlinear. The considered dispersion relation 
was the one of BEC in the approximation of point-like 
interaction [7], which is essentially nonlinear, though 
monotonic. The problem was solved in full, and the 
reflection and transmission coefficients were derived as 
functions of the incidence angle and frequency. 

In the present work we consider the same problem 
with the dispersion relation of the form that approxi-
mates well the specific dispersion curve of superfluid 
helium with its phonons and rotons. We solve the prob-
lem of any quasiparticle incident on the interface from 
either side in the one-dimensional case. This includes 
creation and reflection of rotons on the interace. 

Section 1 contains derivation of the solutions of the 
equations describing the quantum fluid with the taken 
dispersion relation in the half-space. The problem of a 
solid’s phonon incident on the interface is solved in 
section 2. The probabilities of creation of either the re-
flected phonon or the phonon or R–roton or R+roton in 
superfluid helium are obtained as the corresponding 
reflection and transmission coefficients for wave pack-
ets. The second part of this problem, when one of the 
quasiparticles of superfluid helium is incident on the 
interface, is solved in section 3. The probabilities of 
each quasiparticle creation are obtained. It is shown that 
the total reflection probability of an R–roton is close to 
unity, while its creation probability on the interface is 
very small compared to the other quasiparticles’ of su-
perfluid helium. This makes the detection by a solid 
detector of R–rotons created by a solid heater almost 
impossible, and explains why they were not detected 
until 1999. 

The results are also important for classical acoustics, 
as an example of solution of the problem of creating 
multiple waves lying on the same non-monotonic dis-
persion curve. 

2. QUANTUM FLUID WITH ROTON-LIKE 
DISPERSION RELATION 

In the model of quantum fluid built in [3] it is de-
scribed by the linearized equations of ideal liquid with 
nonlocal relation between pressure and density. In the 
one-dimensional case, when the fluid fills the half-line 
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0>x , the problem in terms of pressure  can be 
brought to the form 
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The Fourier transform of the kernel  is related 
with the dispersion relation of the quantum fluid [3] 
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Here  is the sound velocity at zero frequency;  
is the quantity that defines the scale of wave vectors on 
which  becomes essentially nonlinear; parameter 

 determines the form of the dispersion curve. The 
values  give negative  for a range of wave 
vectors and therefore are not physically relevant; 

s

(k

<

gk

)Ω

−λ
λ

1 ( )k2Ω

2/3−>λ  provide monotonic function Ω  that 
does not differ in principle from the relation already 
considered in [6]. In the interval 

( )k2

( )2/3−

rotω

,1−∈λ  the 
dispersion curve is non-monotonic, with the “maxnon” 
maximum  and the “roton” minimum , and the 
value of  gives good approximation of the 
dispersion relation of superfluid helium (see Fig.1). 
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In this paper we restrict our consideration to the last 
case, that is most interesting, and to frequencies 

. In this interval all the six roots  
of dispersion equation 

( max,ωωω rot∈ 3,2,1k±

( ) 22 ω=Ω ik , (4) 

are real and can be put in the order 0 . 
Then  corresponds to a superfluid helium’s phonon, 

 to R
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The kernel  that corresponds to the dispersion 
relation (3) is obtained from (2) and (3): 
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and  are the poles of , that in the considered case ±k ( )kh

( ),−1−  can be written as 

( ) 2/11 λλ +±−=± ikk g . (7) 

The problem (1) was solved by Wiener-Hopf 
method in [5] for Ω  of polynomial form, and the 
solutions were shown to be sums of waves that corre-
spond to all the roots of dispersion equation (4) in the 
complex  plane. Therefore we can search for solutions 
of (1) with the kernel  from (5) in the form 

( 22 k

( )xh

)

)

k
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ii tixiktxP ωα exp. . (8) 

Substituting (7) and (5) into (1), we obtain that all 
the  of (8) really have to be the roots of equation (4), 
and the amplitudes of the waves  satisfy the two 
equalities 
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The number of waves in the solution (8) can be up to 
six. However, when we solve a definite problem of 
waves’ transmission through the interface, the given 
asymptotes of the solution at infinity force some of the 
amplitudes to be equal to zero. Then the boundary con-
ditions stated on the interface, together with equations 
(9), provide enough equations for the problem to be 
solved in full. 

3. CREATION OF PHONONS  
AND ROTONS OF SUPERFLUID HELIUM 

BY A SOLID’S PHONONS 
Let there be an interface  between a solid and 

the quantum fluid dispersion relation (3) and let a pho-
non of the solid be incident on the interface. The solid 
with density  and sound velocity  occupies the 
half-space , and is described as an ordinary con-
tinuous medium. The quantum fluid with density  
and dispersion relation (3) fills the region , and is 
treated as a continuous medium with correlations (1). 
Quasiparticles of energy  are wave packets propa-
gating in corresponding media with the carrier fre-
quency . It can be shown (see for example [5]), that 
the wave packet’s interaction with the interface can be 
described in the first approximation as that of a plane 
wave with the carrier frequency. All the transmission 
and reflection coefficients are obtained then as those 
quantities for plane waves. 

0=x

ω

solρ
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sols
x

0ρ
0>x

=

ω

In the problem formulated for plane waves, the solu-
tion in the solid is known to consist of the incident and 
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reflected waves. The solution in the quantum fluid can 
consist only of waves that are constitutuents of wave 
packets traveling away from the interface, i.e. with 

0>Ω dkd

21 ,, kkk ±±±
, so there is only one of each pair 

. We define the signs of roots  of (4) 
for them to be the wave vectors of this solution. As R

3 3,2,1k

0

–

rotons have negative dispersion, the R–roton wave of the 
out-solution has negative wave vector , and the 
roots are put in order as 

2 <k

3210 kkk <−<< . (10) 

With the help of relations (9) we can put down this 
“out-solution” in the form with a single “amplitude” 
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The hydrodynamic velocity is found from (11) and 
the linearized equations of ideal liquid 
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The three plane waves in (11) and (12) correspond to 
the phonon, R–roton and R+roton wave packets that 
travel away from the solid, R–roton having momentum 

 directed towards the interface. 2k=
The two boundary conditions, that demand continu-

ity of pressure and velocity on the interface, sew to-
gether the solutions in the quantum fluid (11), (12) and 
in the solid. Then the amplitudes of the reflected and 
transmitted waves are expressed in terms of the ampli-
tude of the incident wave. The reflection coefficient, 
defined as the ratio of pressures in the reflected and in-
cident waves, is obtained 
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Here  is the impedance of the interface at zero 
frequency,  is dimensionless frequency, ∆  is a con-

stant,  is a construction of wave vectors , that 
can be shown to be the function of only  and : 
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When the solid’s phonon is incident on the interface, 
it is either reflected with certain probability, or one of 
the three possible quasiparticles is created in the super-
fluid helium. The probability of the phonon’s reflection 
is equal to the reflected fraction of the incident wave’s 
energy density 2

→r  in the problem formulated in terms 
of plane waves. The energy transmission coefficient is 
the fraction of energy density that is transferred through 
the interface 21 →

→ −= rD , so from (13) we have 
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It is the creation probability of either a phonon or an 
R+roton or an R–roton. The creation probability of each 
of them is the corresponding partial transmission coeffi-
cient – the fraction of the energy of the incident wave 
that is carried from the boundary by each of the three 
waves of superfluid helium. 

The energy fractions are proportional to the energy 
density fluxes in each wave packet (not energy densi-
ties, as the packets differ in length due to difference in 
group velocities) when they all are far enough from the 
interface to be spatially separated. It was shown in [8] 
for the quantities averaged that over quick oscillations, 
the energy density flux in a wave packet  is equal to 

, where  is the energy density and u is the 
group velocity of the wave packet. The energy density 
in a wave packet can be brought to the form 

iQ

iii uQ ε= iε i

22
0 ii Vρε =  [5], where V  is the amplitude of hydro-

dynamic velocity. The relative amplitudes of velocities 
in the three wave packets, as well as in plane waves, are 
given by (12), and the group velocities are obtained 
from the dispersion relation (3), so the energy fluxes in 
the wave packets can be shown to be proportional to the 
coefficients 

i
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The structure of coefficients (16), together with 
inequalities (10), leads to the fact that  for 
all frequencies. Also we can see that near to the roton 
minimum 

3,12 ξξ <

( ) rotkk ωω −+ ~32

3ξ

 is a small parameter, 

so  and  also tend to zero as 2ξ rotω−ω . In the 

same way  and  tend to zero as 2ξ 1ξ ω−max

98.0−

ω

=λ

 in the 
neighborhood of maxnon maximum. So one can say 
that these two asymptotes of  at the ends of the 
interval of frequencies, in which R

( )ωξ2

( )χ

–rotons exist, pull 
the R–roton creation possibility curve to zero. The 
qualitatively described behavior of the partial trans-
mission coefficients is well reflected by numerical 
evaluation of the curves  for different parame-
ters  and . Fig. 2 shows the partial and total 
transmission coefficients for  and 

, which is common impedance for a bound-
ary between superfluid helium and a solid. 

→
iD

0

01.

Z

0=

λ

0Z

The smallness of  compared even to 

, which is small by itself for the considered 
impedances, means that R

( )χ→
2D

( )χ→D
–rotons are barely created 
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in the experiments on creation of beams of quasipar-
ticles of superfluid helium by a solid heater. 

 
Fig. 2. The total transmission coefficient  for a 

phonon incident on the interface from the solid (thick 
solid curve) and partial transmission coefficients , 
equal to creation probabilities of the phonon  

(dashed), R

→D

−=λ

→
iD

→
1D
→
3D

98.0

–roton  (dash-dotted) and R→
2D +roton  

(dotted), as functions of frequency. Here , 
01.00 =Z  

4. REFLECTION OF PHONONS  
AND ROTONS FROM THE INTERFACE 
Now let us consider the problem when one of the 

quasiparticles of superfluid helium is incident on the 
interface with a solid. The solution in the solid is just 
one transferred wave. About the solution in the quantum 
fluid we know that there is only one wave that corre-
sponds to the wave packet traveling towards the inter-
face. Together with the wave packets traveling away 
from the interface there are four waves in the solution. 
Taking into account the two relations between the am-
plitudes (9), there are two free amplitudes. We take the 
already considered out-solution (11) as the first of the 
two linear-independent solutions, that constitute the full 
solution in the quantum fluid with the given asymptotes 
at infinity. 

The second one is built this way: if, for example, a 
phonon (wave 1) is incident, we constitute the solution 
of waves with wave vectors ,  and , with the 
amplitudes related through Eqs. (9). This way the linear 
combination of the in- and out-solutions gives the full 
solution in the quantum fluid when the incident qua-
siparticle is phonon, and consists of waves that give a 
phonon wave packet traveling towards the interface and 
three wave packets traveling away from it. The three 
sorts of in-solutions, corresponding to the type of the 
incident wave, can be written in the form 

( )1k− 2k 3k
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n
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The two boundary conditions provide two relations 
between the amplitudes of in- and out-solutions and the 
transmitted wave in the solid. Then the relative ampli-
tudes of all the constituent waves are calculated with the 
use of (11) and (18). The energy fluxes are obtained in 
the same way as in the previous section. 

When an i -th wave packet of superfluid helium is 
incident on the interface, all the three waves are re-

flected. We denote the fraction of the energy of the in-
cident wave packet that is carried by the -th reflected 
wave as  for i . It is shown that 

j

ijR 3,2,1, =j

( ) ( )( )
( )302

302

fZf
fZ i

+

+ −

χ

χkg=

(i
nf−

3,

ii kk
k

−→
]3

jiij R=

12R k

n k ,[ 1

ji ≠

4= χ
2

2

∆+

+

R

=

→ =

( ) ~3

)

1

13

33

O

−=

=

=
=

+2 k

1

32

22

=

=

=
= O

( )

2
2

222

2
2

222

fkk
fkf

R
gg

i
g

i

ii ∆+

∆+ −− . (19) 

Here )  are modified combinations of wave vec-
tors , that are equal to  from (14) in which one 
of the three wave vectors enters with the opposite sign: 

2,1k nf
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For   and the expressions for them are 
obtained from the expression for  by cyclic permuta-
tion of subscripts in ,  and : 
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In terms of quasiparticles the quantity  gives the 
probability the quasiparticle of type  is reflected as 
type , i.e. the probability that when a quasiparticle of 
type  is incident on the interface, the quasiparticle of 
type  is reflected, so  can be called conversion 
coefficients. The probability that the quasiparticle i  is 
reflected is , the probability it is transmitted 

is its energy transmission coefficient . 
When all types of quasiparticles coexist in the quantum 
fluid in equilibrium, the fraction of the total energy flux 
incident on the interface, that is transmitted into the 
solid, can be shown to be equal to , and 
thermodynamic equilibrium between the two media at 
equal temperatures demands that . This 
equality can be checked in a straightforward way by 
simple, though a little cumbersome, calculations. 
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In the neighborhood of the roton minimum  

the small parameters are 
rotωω ≈

rotωω −kk +~ 23,2u , 
and the asymptotic behavior of conversion coefficients 
is obtained by direct substitution into (i

nf±  and then (19) 
and (20): 
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In the neighborhood of the maxnon maximum 
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The asymptotes (21) and (22) give us full qualitative 
description of  behavior on frequency. In particular, 
the last equality of (21) means that when an R

ijR

0Z

–roton 
with frequency close to the roton minimum is incident, 
it is almost always reflected as R+roton, and vice versa. 
The last equality of (22) means that when an R–roton 
with frequency near to the maxnon maximum is inci-
dent, it is almost always reflected as phonon, and vice 
versa. The asymptotic behavior of the conversion coef-
ficients  is illustrated by Fig. 3, in which the curves 

 are shown for the same parameters as in Fig. 2, 
 and . 

ijR

98
( )ωijR

0−=λ . 01.0=

 
Fig. 3. or  and  The 

curves are denoted by the corresponding pairs of sub-
scripts.  and  are  cloze but not equal  to unity at 

 because of the small impedance, and the pic-
ture’s scale just does not let us see the finite difference 

( )ωijR  f
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11R 33
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The total probability that R–roton is reflected is 
, and so it tends to unity at both 

ends of the interval . These two asymp-
totes pull to zero the curve of R

2322212 RRRR ++=
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→
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( )ω←
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←
3D

( max,ωωrot∈

2R−

)
–roton detection prob-

ability , which is equal to 1 , in the same way 

as  in the previous section. Moreover, the depend-

ences  are qualitatively the same as of , 

so the transmission coefficient for R

( )ω→
iD

←
2D–rotons  is 

much less than the ones for phonos  and R←
1D +rotons 

 (see Fig. 2). This means that R–rotons are very 
poorly detected by solid detectors, in comparison to 
phonons and R+rotons. Put together with their small 
creation probability, it makes detection of R–rotons 
in the experiments on creating beams of quasiparti-
cles of superfluid helium by a solid heater almost 
impossible. This is the reason they could not be di-
rectly detected until 1999, when the experimental 
group of A.F.G. Wyatt used a special source and R–

rotons were finally registered by means of quantum 
evaporation [2]. 

5. CONCLUSIONS 
In this paper we considered the one-dimensional 

problem of quasiparticles’ transfer through the interface  

between a solid and superfluid helium. This problem 
can be also formulated in terms of wave packets or 
plane waves. The dispersion relation of superfluid he-
lium is non-monotonic, so there are multiple roots of 
dispersion equation . The quasiparticles  
corresponding to these roots 

( ) 22 ω=Ω k

321 kkk <<

i

0 <

←
2D

, in as-
cending order of wave vectors, are phonons, R–rotons 
and R+rotons. Creation probalilities of quasiparticles of 
each type  by a solid’s phonon are obtained (17). 
The probabilities  that a quasiparticle of type  is 
reflected when a quasiparticle of type  is incident on 
the interface are derived (18), (19). The R

→
iD

ijR j

–rotons crea-
tion  and detection  probability are both shown 
to be small, and this explains why they could not be 
detected until the experiments [2]. 

→
2D
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РОЖДЕНИЕ РОТОНОВ СВЕРХТЕКУЧЕГО ГЕЛИЯ ФОНОНАМИ ТВЕРДОГО ТЕЛА,  
ПАДАЮЩИМИ НОРМАЛЬНО НА ГРАНИЦУ 

И.Н. Адаменко, К.Э. Немченко, И.В. Танатаров 

Мы решаем одномерную задачу о прохождении квазичастиц через границу между твердым телом и 
сверхтекучим гелием. Сверхтекучий гелий описывается как сплошная среда с корреляциями. Получены ве-
роятности того, что фонон твердого тела при падении на границу рождает фонон, R– или R+ротон сверхте-
кучего гелия. Также вычислены вероятности, с которыми отражается одна из трех возможных квазичастиц 
при падении на границу заданной квазичастицы сверхтекучего гелия. Показано, что вероятности рождения и 
регистрации R–ротона малы, и, таким образом, дано объяснение тому, что в течение долгого времени они не 
были экспериментально зарегистрированы. 

 
 

НАРОДЖЕННЯ РОТОНОВ НАДПЛИННОГО ГЕЛІЮ ФОНОНАМИ ТВЕРДОГО ТІЛА,  
ЩО ПАДАЮТЬ НОРМАЛЬНО НА ГРАНИЦЮ 

І.Н. Адаменко, К.Е. Немченко, І. В. Танатаров 

Ми розв’язали одновимірну задачу про проходження квазічастинок через границю між твердим тілом та 
надплинним гелієм. Надплинний гелій описується як суцільне середовище із кореляціями. Отримано ймові-
рності того, що фонон твердого тіла при падінні на границю народжує фонон, R– або R+ ротони надплинного 
гелію. Також обчислено ймовірності, з якими відбивається одна з трьох можливих квазічастинок при падінні 
на границю заданої квазічастинки надплинного гелію. Показано, що ймовірності народження й реєстрації R–

ротону малі, і, таким чином, дано пояснення тому, що протягом довгого часу вони не були експерименталь-
но зареєстровані. 
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