BOSE-EINSTEIN CONDENSATION OF PARTICLES WITH SPIN
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One of possible ground states and low-lying collective modes of Bose-Einstein condensate (BEC) of atoms with
arbitrary spin in a magnetic field is studied using Bogoliubov's model for weakly interacting Bose gas. The equation
for the vectorial order parameter, valid at temperatures 7' — 0, is derived and its specific solution is found. This
solution corresponds to the formation of BEC of atoms with a definite spin projection onto magnetic field. We ob-
tain also the necessary condition for thermodynamic stability of such a condensate and the explicit expressions for

low-lying collective modes and magnetization.
PACS: 12.20.-m, 13.40.-f, 13.60-Hb, 13.88.+¢

1. INTRODUCTION

After the first remarkable experiments concerning
the observation of BEC in dilute gases of alkali atoms
such as *Rb [1], **Na [2], and "Li [3] the interest to this
phenomenon has revived [4,5]. Later, BEC has been
also obtained in other atomic species: atomic hydrogen
[6], metastable “He [7], and *'K [8]. The experimental
observation of BEC has become possible due to devel-
opment of laser cooling and trapping techniques [9].
The carried out experiments have proved many predic-
tions of the micro-scopic theory for weakly interacting
Bose gas, which originates from the pioneering work of
Bogoliubov [10]. Bogoliubov's theory has become al-
most the first theory in which it was necessary to move
essentially from the methods of standard perturbative
approach while describing the interaction effects. How-
ever, this theory, in its original formulation, did not take
into account the internal degrees of freedom of atoms.
The spin degrees of freedom have been taken into ac-
count for a weakly interacting Bose gas (spinor BEC) in
[10-19].

The realization of optical trapping of atomic con-
densate [20] has stimulated theoretical interest to spinor
BEC. Bose condensation in a weakly interacting gas of
bosonic atoms has been theoretically studied by many
authors both for spin-1 [12-17] and spin-2 [18,19] bos-
ons. These investigations are based on the effective in-
teraction Hamiltonians of two bosons in which the in-
teraction is characterized by a definite number of inter-
action constants s-wave scattering lengths. The number
of scattering lengths is determined by the total spin of
two interacting bosons taking into account the symme-
try properties of their wave function. For example, in
case of spin-1 atoms the interaction Hamiltonian con-
tains two interaction constants [12-17], in case of spin-2
atoms there are three interaction constants [18,19].
Thus, as the spin value of the atoms grows, the number
of constants which characterize the interaction of two
bosons is increased under phenomenological descrip-
tion. Note that in the mentioned effective Hamiltonians
it is difficult to interpret the physical nature of the iso-
lated term of non-relativistic interaction not associated
with neither potential nor spin-exchange interactions
(see e.g. [18]).

In this paper we study a weakly interacting Bose gas
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of particles with arbitrary integer spin S in a magnetic
field (see also [11]). We start from the interaction Ham-
iltonian for two spin-S bosons. This Hamiltonian is
specified by two functions, which describe the potential
and spin-exchange interactions of spin-S atoms. Ac-
cording to general rules of quantum mechanics we pass
from the pairwise interaction of two bosons to the stan-
dard expression for binary interaction of arbitrary num-
ber of bosons in the second quantization representation.
By solving the problem of multichannel scattering for
the considered Hamiltonian we could find, in principle,
all scattering lengths in terms of the functions character-
izing the potential and spin-exchange interactions.
Thereby, it would be possible to obtain the Hamilto-
nians analogous to the above mentioned effective inter-
action Hamiltonians (see e.g. [18]). However, the Ham-
iltonian of the present paper gives a possibility to re-
strict ourselves by two interaction constants even in the
case of arbitrary spin while studying the ground state,
stability, and excitations in a weakly interacting gas in
the presence of BEC.

2. SEPARATION OF A CONDENSATE

To describe the system with a spontaneously broken
symmetry we address to the method of quasiaverages
[21,22]. According to this method the Gibbs statistical
operator is modified so that it possesses the symmetry
of the degenerate state. This modification is usually

done by introducing the infinitesimal "source" vF
(v — 0), which has the symmetry of phase under con-
sideration into the Gibbs exponent. Then the average

value of any physical quantity A is defined as
<A>=1lim lim Tra,A, (1)

v>0V >

where the Gibbs statistical operator w,, has the form
i, = explQ, — Bl -l +vE). )
Here B=1/T, p are the reciprocal temperature and

chemical potential respectively, and H , N are the Sys-

tem Hamiltonian and the particle number operator. The
thermodynamic potential Q,, being a function of ther-
B,u is found from the

modynamic variables
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normalization condition Trw, = 1. Notice that the lim-

its in (1) are not permutable.

Consider a gas of condensed bosonic atoms with
spin S. The origination of a condensate is accompanied
by the gauge symmetry breaking and, therefore, in order
to remove this kind of degeneracy we should choose the
"source" VF in (2) such that [w,,N]#0 (N is the
generator of phase transformation),

. 3 (- )

VE = vo [ a2l (x) + 0 (%),

where ¢, (x), {o(x) are the creation and annihilation

operators with index a taking 25 + 1 values (the sum-
mation over the repeated indices is assumed). Then

< Yo (x)>= v1/2 < a,, >~1 that corresponds to

the formation of a condensate of atoms with momenta
p = 0. The quantity ¥, = v12 < &O(x > represents

the order parameter usually called the condensate wave
function (V' is the volume of the system).

Note that the method of quasiaverages and the spa-
tial correlation decay principle allow to justify the re-
placement of creation and annihilation operators with

~ ~ *
[ aara NI TNITA
[21-22] (the condensate separation procedure).

The basic statement of the method of quasiaverages

applied to the description of BEC consists in the follow-
ing [21-22]: the Gibbs statistical operator is replaced by

p=0 by c-numbers,

i) = explQ(¥) - A -V (W), @
where ¥ E{‘I’a,‘l’;} is found from the following
equation:

é%}gfg_: 0. (4)

oY

3. THE GROUND STATE OF SPIN- S BEC

In this Section we study the ground state properties
of spin-S BEC in a magnetlc field. In doing so, we
start from the Hamiltonian " = H — pN which deter-
mines the Gibbs statistical operator (3). This Hamilto-
nian is given by J# = .}2’0 + Jf’p + -721: , where

2
o At - _p
Ho = leala[(gl ~H)8g —hS glag, ey YT

= 2_1§4U(1 3)61+23+4 lot 2[3 34, 4B’ ®)
atr ot
Hy =—— 2 J(1 =3)81 4234401 Qx5S oy Sp 3,y
1234
where SaB are the spin matrices, U(p5), J(p3)
(P;;3 = P, — P3) are the Fourier transforms of the am-

plitudes of potential and spin-exchange interactions
respectively, and h = gH/S, where g is the Bohr

magneton, and H is an external magnetic field. For our
next calculations it is convenient to introduce the so-
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called ladder operators 5 L= S’T + iS’y. Then their non-

zero matrix elements in the representation where S, is

a diagonal matrix, <o |9, | o >= ad, ., have the
form
<a+1]8, [a>=/S(S+1)-a(a+1),
<o—1]5_|a>=,/5(S+1)—a(a-1). (6)

Now we separate the p = 0 components a,  in the

Hamiltonian (the replacement of a,, by c¢-numbers,

d > JV! Y, ) and keep the terms only up to second

order in a . We omit the higher order terms, since

they should be taken into account only when examining
the interaction between quasiparticles, which we will
introduce in the next section. As a result the Hamil-

tonian takes the form 4 ~ 9 + #® . The explicit

expression for ,7{’(0), which contains only ¢ -numbers

Y, reads
ﬂ=i0)(\}f*\}f)2 +&(‘P*S‘P)2
14 2 2
—h¥ Sy - vy, 7
where
YW =w v, ¥YSY=vS op ¥ (8)

The explicit form for #?) will be written in the next
section.
Next, using the normalization condition Trw = 1,

we immediately find the density of thermodynamic po-
tential ©=Q7T/V in the main approximation

(T — 0) of the model for weakly interacting Bose gas,

U(O) (¥w)? + J(O) (P'S¥)? —h¥'S¥ — ¥ .
Therefore, Eq.(5) for ‘I’a takes the form
Wy ~U()E "), ©)
— J(O)X¥ S¥)S up¥p +BS ¥y =

If to introduce the normalized spin functions C,
¥, =/nC,, where n = ‘P;‘Pa is the condensate den-
sity and Q:;Qa = 1, then the latter equation is written as
MGy —nU(OK,,
~nJ(0)C"SC)Supl p +hSeplp =0.

Its solution (™

(10)

), which is an eigenfunction of S’Z,

G (m) _ (m)
(SZ)(XBCﬁ =m&y", is of the form
C5" = 8o (11)
Assuming the vector h directed along z-axis,

h = (0,0,/) and taking into account that S, is a diago-

nal matrix, whereas S , have no diagonal matrix ele-

ments in the considered representation of spin matrices,
one finds from Eq. (3.8)

n= Lmzh (12)
U(0) + m2J(0)



Formulae (11), (12) result in the following expression
for the density of equilibrium thermodynamic potential:
2
o= — lM (13)
2 U(0)+m?J(0)

We are now in a position to study the stability of the
possible ground states (11). In the considered approxi-
mation the thermodynamic potential of normal state is
zero (the order parameter ¥, vanishes). Therefore, for

stability of the studied ground state the density of ther-
modynamic potential must be negative, ® <0 and,
consequently, according to (13), we can write the nec-
essary condition of thermodynamic stability,
U(0)+m>2J(0) > 0. (14)
Let us find now such spin projections m , which corre-
spond to minimum of the potential (13). For simplicity,
we study the case of h =0 (or sufficiently weak h ).

Then

2
__ u
RN WERT (4

As it can be easily seen that in contrast to the usual Bo-
goliubov theory, where U(0) > 0 (the necessary condi-

tion of stability), the case U(0) < 0 is also permissible.
Therefore, we have the following three situations:

1) U(0) >0, J(0)> 0. In this case the requirement
(14) is automatically fulfilled. The density of thermody-
namic potential (15) has a minimum at m = 0, in which
o=-p? /2U(0). We call
romagnetic ordering.

2) U(0) >0, J(0) < 0 but such that the requirement
(14) is fulfilled. The minimum of ® (see (15)) is
reached for m._. = +(m¢ —1), where

m, =[-U©)/JO)]'2, m <5 +1 (16)
(the square brackets denote an integer part). This case
corresponds to ferromagnetic ordering.

3) U(0)<0, J(0)>0 but again
U(0)+m?2J(0) > 0. Here the minimum of ® is given
by the spin projections m_. = +(m, +1), where m,

this case as antifer-

such that

min
|

a2 = J(
p
+J anaam pa+ ZJ

p,o
+%2J(p)[Sm +4a
P

~+
-m (apm—la—pm+1 -pm+1

Here the summation index o in the second term takes
all the values of spin projections except m — 1, m, and
m + 1. We have separated these three spin projections
and written them as the first term of the above "Hamil-
tonian". In a similar manner assuming the vector h
directed along z-axis, h =(0,0,%), and eliminating the
chemical potential p by using (12), we can find the

explicit expressions for .7;,”(52), .7;,”152) and thereby the

total Hamiltonian quadratic in creation and annihilation
operators:

O)nmz l(m B l)é;m—ldpm—l + md;’—m

is also defined by (16) but with U(0) <0, J(0)>
This case also corresponds to ferromagnetic ordering.

4. LOW-LYING COLLECTIVE MODES

Here we shall obtain the excitation spectra for spin-
S BEC employing the well-known diagonalization
procedure (Bogoliubov’s w —wv transformations [10])
for the Hamiltonian quadratic in creation and annihila-
tion operators.

The part of the spin-exchange interaction Hamilto-
nian (see (5)), which is quadratic in ap, (p # 0) has
the form
P = J0)PS¥Y il Sa, +

P

+— ZJ [*S‘P

(17)
ToSW) + (a5SY) (¥ Say) + h.c.]

where we have used the notations (8). Taking into ac-
count that

. 1 - . . i A .

S, :E(S+ +5.), 8, :_E(S+ -S.)

and employing (6) for nonzero matrix elements of S 4 as
well as the explicit expression for the condensate wave

function ‘P = /nd,,, one finds
(‘P S‘P) (ap ap) = anaaPaam,
o
(G5SW) (67, 8¥) = nm?ag,, a7, +
T Sms—m[ pm— 1A+pm+l + d;m-%—ldipm—l]’
(a +S‘P)(\P Sa )— nmzapm apm +
+_[S—m pm—1%pm— 1+S2 pm+lapm+l]
where

=SS +1)—m(m+1).

As a result the "Hamiltonian" (17) takes the form

,+ (m + 1)apm+1 pm+l J+

At A ~ ~
[ Gpm _pm + 20p,,0p,, + a_pmapm]+
~ 2 A+ S 2 A at a ]
apm—l)+S*mapm—lapm 1 S m pm+1 pm+1

%) = 72 4 D)+ P (m - 1,m+1),
where

a2 = Z[sp

p7a

Ay = e, + g ®)fiimipm +
p

1 At A
+Ezgm(p)[a;;maipm +a pm —pm]

(18)

— J(O)nm(m — oty + h(m — oz)]&gq&pa,

(19)
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/\) 2 -
.7(( )(m -Lm+ 1 Z [8 —h+ Bm )hpm+lapm+l

+le +h+p m< ]

+ Zam (p)[apm—la—pmH T Apm-19—pm+1 J
p

The introduced quantities a.,,(p), B,,(P), 9,,(p) are
given by
n
0Lm(p) = EJ(p)SmS—m >
n
B (p) = /(P)ST, + I (O)m (20)

£ (@) = nlU@) + m? I (p)

Now we are in a position to carry out the diagonali-
zation of the total Hamiltonian (18). In this connection
let us note that the "Hamiltonians" (19) contain the crea-
tion and annihilation operators with not overlapping sets
of indices a, m—-1, m, m+1 (azm=z1l,m).

Therefore, we can perform their diagonalization inde-
pendently. The evidence of this statement is also associ-
ated with the fact that (18) can be considered as the
Hamiltonian of the system consisting of four kinds
(a, m, m £ 1) of noninteracting particles.

The "Hamiltonian" .7?&2) has already a diagonal

form with the following spectrum:
m,,b7a(p) =g, - JOm(m —a) + h(m —a). (21)

To carry out the  diagonalization  of

H (2)(m —1,m + 1) we introduce the creation and anni-

hilation operators I;pm + (o=11),

~

Apm+o = um,c(p)gpercs + Um,c(p)gjpm—m

+ * I+ * r
Apm+c = um,c(p)bpm+c + ’Um,c(p)b—pmfc
in terms of which this "Hamiltonian" has the diagonal
form,

2
H( )(m +o ) = Z(Dm,(s (p) b;m-m bpm+c +Ey,
pP.c
where ,, ;(p) and E are the excitation spectra and

the ground state energy respectively. In order that the
introduced operators meet the canonical commutation
relations, the functions w,, 5(P), v, s(p) must obey

the relationships:
| ump(p) |2 - | ’Um7c5(p) |2= L,
um,c(p) Um,fﬁ(_ P) - Um,o(p)um;cs (_ P) =0.

Simple mathematical manipulations (see e.g. [22]) result
to the following expression for low-lying collective
modes:

O (D) = nmc(J(O) - %J(p)) —oht 22)

.|
+ {g; +e,ml(p)(S(S +1)—m?)+ [@j T,

moreover,
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o (p)
0‘31 (p)_ (mm c (P)_V mo )2

WL G(p) Ym ,O

Oms(®) = T f ’

>

o (P)=
J

P -
where

'Ym,yc = Sp + Bmc(p)_ (23)
(here B,,;(p) depends on the product moc ). In fact, the
functions u,, 5(p), v, () do not depend on G be-

cause, as it can be easily shown, the quantity
@y (P) = Vi, 1s independent of . The sign plus

before the square root in (22) corresponds (for ¢ =1)
to the wave, which propagates in one direction, whereas
the sign minus corresponds (for o = —1) to the wave
propagating in opposite direction. Notice that the ob-
tained spectra as well as (21) contain only the amplitude
of spin-exchange interaction and does not depend on the
amplitude of potential interaction.

When m =0 (the antiferromagnetic ordering), the
excitation spectrum (22) takes the form

p) = &2 +e,nI(p)S(S +1) £ h.

In this case for ~ =0 and p — 0 we have

op)=cp, c= JﬁJ(O)S(S +1).

In ferromagnetic case (when m =.S) the excitation
spectrum is of the form

nd(p)S

o(p) =¢, + (1-0)+nJ(0)Soc —och.

In a similar manner we can perform the diagonaliza-

. 7(2) .
tion of /(M) and thereby to obtain another spec-
trum of excitations. This spectrum depends on the am-

plitudes of spin-exchange and potential interactions,

0 (p) = 62 + 26,nU(p) +m*I(p)) . (24)
The corresponding functions u,,;, and v,,, can be eas-
ily found and have the form,

u (p) = 2 om®) oy On®) ey

z\lgpwm(p) szpwm(p)
When J(p) =0 the excitation spectrum (24) coincides

with those, obtained Bogoliubov [10]. At small p the
spectrum has the phonon behavior,

on®)=cr. o= [T U0)+m?I(0),

In this formula and in (24) we have chosen the arithme-
tic value of the square root.

The magnetization is defined as M = g Tri(W)S ,

where ¢ is the Bohr magneton, S is the spin operator in
the second quantization representation and the Gibbs
statistical operator w(\¥') is given by (3). Up to the second

order in dy,,
M=gVm+gm Y (|um(P)|? +[ve(P)[?)fm(P)
p=0

+gm 3 (1) 2 + Vi1 () P)Sms1 @)+ fno1 ()

p#0

this magnetization is of the form



+8 2 ([t @+ St N+, D0 fo (D),

p=0 p=0 ao=m,m+l1
where we have taken into account the fact that the func-
tions  u, 5(P), ¥y o(P) do not depend on o,

Um—l(p) = Um+1(p)’ um—l(p) = Um+1(p) . The fun-

ctions fp,(P), £, 1(P), f,,_,(P), fo(P) represent the
boson distribution functions of quasiparticles with chemi-
cal potential p =0 and excitation spectra ®,,(p),

com’l(p), comﬁl(p), ®p, o (P) Tespectively (see (24),
(22), (21)).

In conclusion, we have studied BEC of atoms with ar-
bitrary spin in a magnetic field on the basis of the model
for weakly interacting Bose gas. We have derived the
equation, which determines the ground state of spin-S
BEC at T — 0 and found its specific solution. This solu-
tion corresponds to the formation of BEC of spin-.S atoms
with a definite spin projection m that also holds for an
ideal Bose gas [11]. The explicit expression for thermody-
namic potential as a function of chemical potential and
spin projection has been obtained. It generalizes the ther-
modynamic potential for weakly interacting Bose gas to
the case when both potential and spin-exchange interac-
tions act between bosons. The thermodynamic stability of
the obtained ground state has been studied and the spin
projections which give a minimum of thermodynamic
potential have been found. These projections are deter-
mined by the integral part of the ratio of the potential and
spin-exchange interaction amplitudes. The expressions for
low-lying collective modes corresponding to the ground
state (11) as well as the magnetization have been obtained.
Notice that Eq. (10) for the order parameter has also other
solutions different from (11). The goal of our present re-
search is to seek such solutions.

REFERENCES

1. M.H. Anderson, J.R. Ensher, M.R. Matthews,
C.E. Wieman, E.A. Cornell //Science. 1995, v.269,
p. 198-201.

2. K.B. Davis, M.-O. Mewes, M.R. Andrews,
N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle
//Phys. Rev. Lett. 1995, v. 75, p. 3969-3973.

3. C.C.Bradley, C.A. Sackett, J.J.Tollett, R.G.Hulet
//Phys. Rev. Lett. 1995, v. 75, p. 1687-1690.

4. C.J. Pethick, H. Smith. Bose-Einstein condensation in

dilute gases. Cambridge:
Press", 2002, 402 p.

5. L. Pitaevskii, S. Stringari. Bose-Einstein condensation.
New York: "Oxford University Press", 2003, 382 p.

6. D.G. Fried, T.C.Killian, L. Willmann, D. Landhuis,
S.C. Moss, D. Kleppner, T.J. Greytak //Phys. Rev. Lett.
1998, v. 81, p. 3811-3814.

7. F.Pereira dos Santos, J. Lonard, J. Wang,
C.J. Barrelet, F.Perales, E.Rasel, C.S. Unikrishnan,
M. Leduc, C.Cohen-Tannoudji //Phys. Rev. Lett.
2001, v. 86, p. 3459-3462.

8. G.Modugno, G.Ferrari, G. Roati,
A. Simoni, M. Inguscio //Science.
p. 1320-1322.

9. S.Chu // Usp. Fiz. Nauk. 1999, v. 169, p.274-291;
C.N. Cohen-Tannoudji //Usp. Fiz. Nauk. 1999, v. 169,
p-292-304; W.D. Phillips // Usp. Fiz. Nauk. 1999,
v. 169, p. 305-322 (in Russian).

10. N.N. Bogoliubov //J. Phys. (USSR). 1947, v. 11, p. 23-
32.

11. A.L. Akhiezer, S.V.Peletminskii, Yu.V. Slyusarenko
/IJETP. 1998, v. 86, p. 501-506.

12. T. Ohmi, K.Machida //J. Phys. Soc. Japan. 1998,
v. 67, p. 1822-1825.

13. T.-L. Ho //Phys. Rev. Lett. 1998, v. 81, p. 742-745.

14.M. Ueda //Phys. Rev. A. 2000, v.63, p.013601-1-
013601-4.

15.CK. Law, H.Pu, N.P.Bigelow //Phys. Rev. Lett.
1998, v. 81, p. 5257-5261.

16. M. Koashi, M. Ueda //Phys. Rev. Lett. 2000, v. 84,
p. 1066-1069.

17.T.-L. Ho, S.-K. Yip //Phys. Rev. Lett. 2000, v. 84,
p. 4031-4034.

18. M. Ueda, M. Koashi //Phys. Rev. A. 2002, v.65,
p. 063602-1-063602-22.

19. J.-P. Martikainen, K.-A. Suominen /.J. Phys. B: At.
Mol. Opt. Phys. 2001, v. 34, p. 4091-4101.

20. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur,
S.Inouye, H.-J. Miesner, J. Stenger, W. Ketterle
/IPhys. Rev. Lett. 1998, v. 80, p. 2027-2030.

21.N.N. Bogoliubov. Lectures on quantum statistics,
vol. 2. Quasiaverages. New York: "Gordon and
Breach", 1970, 231 p.

22. A.l. Akhiezer, S.V. Peletminskii. Methods of statistical
physics. Oxford: "Pergamon Press", 1981, 450 p.

"Cambridge University

R.J. Brecha,
2001, v.294,

BO3E-SMHIITEMHOBCKASI KOHAEHCAIIUS YACTHI] CO CITMHOM

A.C. Ilenemmunckuii, C.B. llenemmunckuii, FO.B. Cnrocapenko

Ha ocnHoBe Mozenu boromo0oBa criaboB3anMoIeHCTBYOIIETo 003e-ra3a H3yUYeHBI OTHO U3 BO3MOXKHBIX OCHOBHBIX COCTOSI-
HUH ¥ HHU3KOJIeXKAIUE KOJUICKTHBHBIC BO30YKACHHUS 003e-3HHIITeHHOBCKOro KoHneHcata (BOK) atoMoB ¢ mpoW3BOJIBHBIM
IENTBIM CIIMHOM B MarHUTHOM ToJie. [loiydeHo ypaBHeHHe sl BEKTOPHOTO MapamMeTpa IMOpsIKa, CIIPaBeUTUBOE TIPU TeMIIepa-
typax T — 0, ¥ HalifIeHO €ro YacTHoe pelieHne. DTO pellieHre COOTBETCTBYET 00pa3zoBanmio BOK aToMOB ¢ onpeeneHHOM
MIPOEKIIHEH CITIHA Ha HaNpaBJIeHue MarHUTHOTO 1mojis1. HaiieHs! Takoke He0OX0MMOE YCIIOBUE TEPMOANHAMUYECKON YCTOHYH-
BOCTH TaKOT'O KOH/ICHCATa U BBIPAXXEHUS ISl CIIEKTPOB JIEMEHTapHBIX BO30YKIICHHUI U HAMAarHUYEHHOCTH.

BO3E-EMHINTEMHIBCbKA KOHJIEHCAIISI YACTUHOK 31 CIITHOM

O.C. Ilenemmincokuii, C.B. Ilenemmincoxuil, FO.B. Cnrocapenxo

Ha ocHoBi Mozeni boromo06oBa ciabko HeifeanbHOro 003e-rasy BUBYEHO OAMH i3 MOMUIMBHX OCHOBHHX CTaHIB 1 KOJIEKTUBHI
30yoKeHHsT 603e-elHITeiHIBChKkoro KoHaeHcaTy (BEK) aToMiB i3 JOBUTBHMM IUIMM CITIHOM y MarHiTHOMY moui. OTpUMaHo piB-
HSHHSI JUT1 BEKTOPHOTO MapaMeTpa MOpsIIKy, CIpaBeyiuBe Npy Temmeparypax 1' — 0, Ta 3HaiiIeHO HOro YacTKOBHII PO3B'S30K.
et po3s'sa3ok Bignosigae yrBopenHto BEK aTomiB i3 BU3HA4YEHOIO TIPOEKIIIEIO CITIHY Ha MarHiTHe mose. OepykaHo Takok Heoo-
XiZIHY YMOBY TEPMOJIMHAMIYHOI CTIHKOCTI TAKOTO KOHZIGHCATY Ta BUPA3H JUTs CIIEKTPIB eJIeMEHTapHHUX 30y DKeHb | HAMarHiueHOCTI.
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