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The hierarchy of the Becker-Döring rate equations is used to consider the influence of heterophase fluctuations 

on the kinetics of precipitation in supersaturated solid solutions, including the nucleation stage and the crossover to 
the final Ostwald ripening regime. Numerical simulation shows that a quasi-stationary distribution of solute clusters 
forms in the region of small sizes. This population of small clusters (heterophase fluctuations) is separated by a gap 
from the distribution of coarsening precipitates. The scaling behaviour of the precipitate size distribution during the 
later stage of decomposition is consistent with the Lifshits-Slyozov theory of coarsening.  

PACS: 05.70.Fh, 64.60.Qb, 64.70.Kb, 64.75.+g, 68.35.Rh, 81.30.Mh 
 

1. INTRODUCTION 
The properties of many industrial alloys are 

controlled by the precipitation of second phase 
particles. Traditionally, the precipitation kinetics in 
supersaturated metastable solid solutions is considered 
in terms of three distinct stages: (i) nucleation of stable 
clusters of the precipitating phase, (ii) independent 
diffusion growth of these clusters, and (iii) coarsening 
(Ostwald ripening) that involves the growth of large 
precipitates at the expense of dissolving small ones, 
driven by an overall reduction in the interface energy. 
There exists an important class of alloys in which 
precipitate-matrix interface energy is low. Usually these 
precipitates are coherent with the matrix and resistant to 
coarsening. Examples of such alloys include nickel 
superalloys [1], copper bearing high strength low alloy 
steels (HSLA) [2,3], aluminum alloyed with scandium 
[4,5] etc. Due to precipitation of a high density of 
coherent, nanometer sized particles these alloys exhibit 
substantial strength. This effect can be beneficial or 
detrimental depending on alloy application. For 
example, model Fe-Cu alloys have received much 
attention because of the influence of irradiation on the 
precipitation of copper-rich particles in ferritic steels 
and the related steel hardening and embrittlement of 
reactor pressure vessels [6,7].  

The processes of nucleation, growth and coarsening 
in the system of coherent precipitates with low interface 
energy can occur simultaneously, which makes 
interpretation of the alloy behavior difficult. The 
interface energy affects the nucleation rate, the 
precipitate growth as well as drives the coarsening 
process through the capillarity effect. Existing models 
of the later stage of decomposition consider only large 
coarsening precipitates and solute monomers, whereas 
the population of subcritical clusters is ignored. 
However, even in undersaturated solid solutions a 
steady-state distribution of small-sized clusters forms 
due to continuous nucleation and decay of unstable 
clusters. In 1939 Frenkel has named this distribution the 
heterophase fluctuations (HF) [8]. In this communi-

cation we consider the effect of HF on the kinetics of 
precipitation in binary alloys. At a low interface energy 
and/or high temperatures the HF may contribute 
considerably to the overall balance of solute atoms and 
influence both the nucleation and coarsening stages.  

2. THE MODEL 
Consider a binary alloy supersaturated with a 

component that will be called the solute in the 
following. The alloy may contain second phase 
precipitates which are assumed to consist of the pure 
solute component. All precipitates are approximated as 
spherical in shape. Our goal is to describe the evolution 
of the precipitate size distribution function (DF) which 
is defined as the time-dependent concentration  
of solute clusters of a given size  varying over the 
range from solute dimers to large precipitates. We will 
use an approach known in the literature as the Bekker-
Döring model [9] or the Master equation approach. 
According to this model the kinetic equations for cluster 
concentrations are defined by the rates at which clusters 
absorb a solute atom and lose a solute atom due to 
thermal evaporation. Only solute monomers are 
assumed to be mobile, i.e. direct collisions of clusters 
are not considered within the Bekker-Döring model  
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where  is the concentration of mobile 
monomers (all concentrations are defined in terms of 
atomic fractions). In the diffusion-limited case the 
absorption and emission rates W  and W  are 
given by  
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where  is the atomic volume, is the radius of the 
-atomic cluster,  is the diffusion coefficient of 

solute atoms. C  is the thermal equilibrium 
concentration of solute monomers at the precipitate 
boundary given by the Gibbs-Thomson relation 
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where  is the solute monomer concentration at 
equilibrium with the bulk solute phase and  is the 
precipitate-matrix interface energy.  
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The total number of solute atoms is kept constant 
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where  is the atomic fraction of solute atoms. Q

The solid solution is supersaturated if . The 
excess amount of solute atoms forms clusters of the new 
phase. The well-known expression for the steady-state 
nucleation rate of stable clusters can be obtained from 
Eqs. (1) and (2)  
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is the DF corresponding to the constrained equilibrium 
. The function  has the minimum at 

the critical size n  defined by the relation  
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All clusters, smaller than the critical cluster, play an 
important role providing a "path" for nucleation of 
stable growing precipitates (Eq. (8) contains all cluster 
sizes). Even saturated stable solution ( ) 
contains HF in the form of the equilibrium distribution 
of clusters [8]. This means that the solute solubility is 
not identical to the solubility of monomers. The 
solubility should be defined as the total content of 
solute atoms in the saturated solution including solute 
atoms in subcritical clusters that form and decay due to 
fluctuations, i.e. in the capillary approximation used 
here the solute solubility is given by  
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where γωβ
TkR B1

2
=  is the dimensionless interface 

energy.  
Fig. 1 shows the relative contributions of monomers 

and HF (the second term in Eq. (11)) to the solute 
solubility. It is seen that at small values of the parameter 

 the monomer concentration is lowβ 1. In alloy systems 
with small values of the parameter  the majority of 
solute atoms belongs to immobile clusters and does not 
participate directly in diffusion decomposition. This 
means that the conventional models of nucleation and 
coarsening are valid for systems with ; their 
application to systems with small values of  may 
result in erroneous interpretation of experimental data.  
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Fig. 1.  Relative contributions of monomers and HF 

to the solute solubility versus the interface energy  

To investigate the influence of HF on homogeneous 
nucleation and coarsening of precipitates we track the 
full particle size DF through the cause of 
transformation. We use the numerical method described 
in [11]. To reduce the number of equations solved 
simultaneously we keep the original discrete Eqs. (1) 
and (2) up to 200 atoms in clusters; for larger sizes 
Eqs. (1) and (2) are transformed to a partial differential 
equation of the Fokker-Planck type for a continuous 
size variable, which allows coarse-graining of the 
numerical mesh. The combined set - the discrete 
equations and the continuous Fokker-Planck equation - 
is solved numerically by the method of lines [12].  

3. RESULTS AND DISCUSSION 
In simulations we used dimensionless time 

tDR 1
14 −= ωπτ .  (12) 

The solubility was fixed at the value = 0.2at%, 
then the equilibrium concentration of solute monomers 

 was calculated as a function of the parameter  

eC

eC1 β

                                                           
1 As an example, the interfacial energy of coherent Ni3Al 
particles precipitating in Ni–Al alloys is 14 mJ/m2 [10] and 
the value of  is estimated as β T700≈β . 
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using Eq. (11). Fig. 2 shows formation of the precipitate 
size DF in the supersaturated solid solution during 
aging. The DF is defined in terms of cluster radius 
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-29 m-3. In the initial state the matrix 
contains only solute monomers with the concentration 

= 2 at%. To analyze the simulation results the 
population of precipitates is divided into two groups: (i) 
small clusters (HF with R <  = 1 nm); and (ii) large 
precipitates. The density of HF , the precipitate 

density  and the mean precipitate radius  are 

given by relations 

Q

*R
hfN

p pR

∫=
*

2

),(
R

R
hf dRRFN τ , 

∫
∞

=
*

),(
R

p dRRFN τ ,      , (14) ∫
∞

=
*

),(
R

p dRRFRR τ

where  is the dimer radius.  2R
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Fig. 2.  Evolution of DF at = 0.5 Boxes show the 

quasi-stationary distribution of HF (see Eqs. (9),(13)); 
circles correspond to the Lifshitz-Slyozov distribution 

β

It is seen that the quasi-stationary distribution of 
solute clusters forms in the region of small sizes 
(Fig. 2). In the end of the nucleation stage a gap in the 
solute cluster distribution forms, which separates the 
population of small clusters (HF) from the distribution 
of large growing precipitates. The size width of the 
region of HF depends on interface energy and 
temperature (the parameter ); in particular, it increases 
with decreasing the interface energy. The simulated DF 
of small clusters is well described by Eq. (9) and (13). 
The leading edge of the distribution advances with time 
and large precipitates undergo a process of the Ostwald 
ripening. At the later stage of aging the shape of the 
precipitate DF is close to that predicted by the Lifshitz-
Slyozov (LS) theory of coarsening [13] 
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Fig. 3 shows the time dependence of the mean 
precipitate radius and the precipitate density calculated 
for several values of the parameter  that is 
proportional to the interface energy. It is seen that 
changing the parameter  has a pronounced effect on 
the onset of nucleation and crossover to the later 
coarsening stage. What is important here is that the 
incubation period for nucleation increases with 
decreasing the interface energy; in other words, despite 
low values of the critical size for nucleation the system 
evolves slowly.  
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Fig. 3.  Time dependence of the mean precipitate 

radius (a) and the precipitate density (b). The interface 
energy increases in the direction of arrows  

Intuitively, on the basis of the classical nucleation 
theory [14], completely opposite tendency can be 
expected. But this logic may lead to erroneous 
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conclusions. As an example, we would like to discuss 
here some results of ref. [15], in which a numerical 
precipitation model by Kampmann and Wagner [16] 
(KWN model) has been used to investigate the effect of 
interface energy, solute supersaturation, and diffusivity 
on the kinetics of precipitation in binary alloys. In the 
methodology of the KWN model the kinetics of small-
sized clusters (HF) is not considered. Instead, the 
classical nucleation theory is used to derive the 
nucleation rate as a function of time and solute 
concentration. To simulate the precipitation kinetics the 
continuous time evolution is divided up into a number 
of small time steps. At each step new stable clusters are 
allowed to nucleate; for the existing precipitates a 
deterministic description is used. The radius of the 
newly formed precipitates is set to be slightly larger 
than the critical radius to enable these precipitates to 
grow. The precipitate size DF is used to calculate the 
precipitate volume fraction and the instantaneous mean 
concentration of solute monomers. In the next time step 
the updated concentration of monomers is used in 
calculating the nucleation rate and the deterministic 
growth rates of precipitates. It should be emphasized 
that both the model of this communication and the 
KWN model are based on the same physical 
assumptions. However, in contrast to results depicted in 
Fig. 3, in [15] in the framework of KWN model it has 
been found that the incubation period for decomposition 
decreases drastically when the parameter  decreases 
from 5 to 0.8. The reason of this discrepancy is that the 
KWN model is not physically justified for systems in 
which  is less or of order unity. As it has been written 
in [16] one of the main assumptions of the KWN model 
is the following: those fluctuations formed in the 
nucleation regime which do not grow beyond the 
critical size do not influence the precipitation kinetics 
significantly; i.e. the number of fluctuations with 
subcritical size and, hence the fraction of solute atoms 
contained in them is negligibly small.  

β

β

According to Fig. 3; in the long-time limit the 
asymptotic behavior is consistent with the LS 
coarsening theory [13], i.e. 31τ∝pR and . 1−∝τpN

In the case of strong HF ( = 0.5) the atomic 
fraction of HF remains constant up to = 10

β
τ 7 (Fig. 4b) 

while in the system with small contribution of HF the 
nucleation stage is already completed (Fig. 4,a). The 
reason is that at low interface energy the driving force 
for evolution is low. Note that in the final state at 

= 10τ 10 in the system with strong HF the concentration 
of mobile monomers is small (Fig. 4,b). This should be 
taken into account when using formulas of the LS 
theory for the experimental evaluation of material 
parameters. The point is that the mean precipitate radius 
obeys the asymptotic relation  
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which well agree with our simulation results. This 
relation contains the equilibrium concentration of 

monomers, but not the solute solubility. We have not 
found in the literature discussion of this issue.  

We have also performed simulations of precipitation 
kinetics in the system with a size-dependent interface 
energy. It is known that the interface energy usually 
increases as the second phase particle grows from a 
small cluster into a distinct precipitate. The interface 
energy increases when precipitates lose coherency 
during growth. This means that small-sized precipitates 
may have low interface energy that controls the fraction 
of HF and the nucleation rate, while large observable 
precipitates have a higher value of the interface energy 
that controls the coarsening behavior. We have found 
that in this case (i) nucleation and coarsening processes 
are slow and (ii) at the intermediate stage of coarsening 
the precipitate DF is broader than the LS distribution 
function. The detailed description of these results will 
be presented elsewhere.  

 

 

100 102 104 106 108 1010
0

1

2

  C1
 HF
 P

a β = 6

 

Fr
ac

tio
n,

 a
t%

Aging time  

100 102 104 106 108 1010
0.0

0.5

1.0

1.5

2.0

  C1
 HF
 P

b
 β = 0.5

 

Fr
ac

tio
n,

 a
t%

Aging time  
Fig. 4.  Time dependence of atomic fractions of 

momomers ( C ), heterophase fluctuations (HF) and 
precipitates (P) in the system without HF at =6 (a) 
and in the system with strong HF at = 0.5 (b) 

1
β

β

 397 



 

4. CONCLUSIONS 
Simulation of the precipitation kinetics in systems 

with strong HF (  1) shows that: ~<β
1. HF inhibit the homogeneous nucleation even in 

highly supersaturated solid solutions. 
2. HF influence the shape of the precipitate size 

distribution function. 
3. In the long-time limit the precipitate size distribution 

tends to a stable self-similar distribution close to the 
LS distribution. 
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МОДЕЛИРОВАНИЕ КИНЕТИКИ РАСПАДА В СИСТЕМАХ  
С СИЛЬНЫМИ ГЕТЕРОФАЗНЫМИ ФЛУКТУАЦИЯМИ  

А.А. Туркин, A.С. Бакай 

Иерархия уравнений Бекерa-Дерингa используется для рассмотрения влияния гетерофазных флуктуаций 
на кинетику распада пересыщенных твердых растворов, включая стадию зарождения и переход к конечному 
режиму коалесценции. Численное моделирование показывает, что в области малых размеров формируется 
квазистационарное распределение мелких кластеров (гетерофазные флуктуации), которое отделено от 
распределения растущих выделений. Скейлинговое поведение распределения выделений по размерам на 
поздней стадии распада соответствует теории коалесценции Лифшица-Слезова.  

 
МОДЕЛЮВАННЯ КІНЕТИКИ РОЗПАДУ В СИСТЕМАХ  
З СИЛЬНИМИ ГЕТЕРОФАЗНИМИ ФЛУКТУАЦІЯМИ 

А.А. Туркін, О.С.  Бакай 

Ієрархія рівнянь Бекерa-Дерингa використовується для розгляду впливу гетерофазних флуктуацій на 
кінетику розпаду пересичених твердих розчинів, включаючи стадію зародження і перехід до кінцевого 
режиму коалесценції. Числове моделювання показує, що в області малих розмірів формується 
квазістаціонарний розподіл дрібних кластерів (гетерофазні флуктуації), що відокремлений від розподілу 
зростаючих виділень. Скейлінгова поведінка розподілу виділень за розмірами на пізній стадії розпаду 
відповідає теорії коалесценції Ліфшица-Сльозова. 
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