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The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation
obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that
processes of one phonon decay into three provide a fast establishment of equilibrium in anisotropic and isotropic
phonon systems. It allows us to relate the momentum region in which processes of one phonon decay into three

are permitted to subsystem of low-energy phonons.
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1. INTRODUCTION

Liquid helium is the unique medium in which a
number of interesting macroscopic quantum phenomena
are observed. One of them is the creation of high-energy
phonons with energy close to 10 K by a pulse of low-
energy phonons with typical temperature of 1 K (see
Refs. [1-3]).

The theory of this phenomenon has been developed
in Refs. [4,5]. As it followed from the theory, phonons
of superfluid helium break up into two subsystems:

1. Subsystem of low-energy phonons (/-phonons)
with p < p.. The establishment of equilibrium in this

subsystem is due to three-phonon processes (1> 2)
with typical time 73, =v3,, (see Refs. [6,7]).

2. Subsystem of high-energy phonons ( 4 -phonons)
with p> p.. Here decay processes are forbidden by
conservation laws of energy and momentum and the
fastest are the four-phonon processes (2 <> 2) with
typical time 74, :VZII,p (see Refs. [4,5,8]).

There is strong inequality

T3pp <<T4pp (1)
between 73,, and 74,,. As a result the equilibrium in
[/ -phonon subsystem occurs very quickly in contrast to
h -phonon subsystem where it happens rather slowly.

The difference in group velocities and rather weak
connection between /- and /-phonons results to h-
phonon leaving through a rear wall of /-phonon pulse
and forming of /% -phonon pulse which comes to the
detector after / -phonon pulse.

However, in Refs. [9,10] it was shown, that three-
phonon processes took place not up to p. but to

momentum p3,,, = \4/5p. and therefore phonons with

momenta

p3pp<p<pc (2)
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should be related to /% -phonon subsystem. But in
momentum region (2) processes of one phonon decay
into a greater number of phonons (decay processes) are
still allowed and if the rates of these processes appear
one order of magnitude with v3,, then these phonons

should be related to /-phonon subsystem. It would
seem that it is not essential to what subsystem these
phonons should be related, as the momentum range (2)
is rather small. However, as it has been shown in
Ref. [11], the rate of four-phonon processes is very
sensitive to a numerical value of momentum which
delimitates / - and /4 -phonon subsystems. Therefore the
calculation of the rates of decay processes is of
undoubtful interest as it will allow us to answer the
question to what subsystem the mentioned momentum
range should be related. Here we consider one of these
processes such as the process of one phonon decay into
three (1> 3).

2. PROCESSES OF ONE PHONON DECAY
INTO THREE

Conservation laws of energy and momentum which
should be satisfied in process of one phonon decay into
three can be written as

P1=P2 +P3 + P4, 3)

£ =6y +6&3+8y4, “)
where p; is the momentum of i-th phonon
participating in the process and ¢; is its energy which
we write as

gi=¢(p;)=cp;i(1+v(p;)). ®)
Here ¢=238-10% cms is the velocity of sound and
w(p) is a function which describes a deviation of a
spectrum from linearity which is small (|1//(p) <<1) but

nevertheless it completely determines the mechanisms
of phonon interactions. Here and below we shall use the
simple analytical approximation of function l//(p)

obtained in [7] which is valid for p < p,.
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l//(p) =4 max p_z(l _p_ZJ . (6)
Pc Pc

Here ., is the maximum value of function w/(p)

reached when p = p,. / V2 . In case of saturated vapour

pressure v .. =0.046 and p. =cp,/kp =10 K.

From conservation laws (3) — (4) taking (5) into
account we obtain a relation on angles between phonons
with momenta p,, p, and p3, ps

(2p1 —2py + @) —2p3p4834

Ci2 = (7
2pip2

where p=h-la=f3-Ja fi=piv(p;),

¢jj =1-cos6;;, and 6; is the angle between phonons

with momenta p; and p ;.

Having put {34 and ¢}, equal to zero in (7) and

taking (6) into account we derive the boundaries of
regions in which processes of one phonon decay into
three can take place

1
p3s(p1,p2)= 10 (5p1-5p2

iﬁJ—lSprOmpz—lSp%+12p3), (8)
P3(P17P2):P1~

From the positivity of radicand in Eq. (8) the
restrictions on momentum p, could be obtained:

max(0, p,_) < pp <min(p;, py), )
where
1
p2i(p1)23(P1 iz\/gw prznax _p12 )7 (10)
9
Pmax = E c- (11)

From Egs. (8) — (11) it follows, that the momenta of
phonons participating in 1 — 3 processes can change in
ranges (see also Ref. [12]):

0< 234 <N3¥5Pc = Prin (12)

0<p1 <Pmax - (13)
At saturated vapour pressure P, =7.75 K and
DPmax =948 K.

We note that when p; < p3,, the processes of one

phonon decay into three can proceed at rather big angles

between momenta of interacting phonons while when

P1 > p3pp the mentioned processes are small-angle.
Interaction of phonons in superfluid helium is

described by Landau Hamiltonian which we write as
(see, for example, [13])

H, =Hy+V3+Vy. (14)

Here H o 1s a Hamiltonian of noninteracting phonons

and terms 173 and ¥, describe the interaction of

phonons caused by the third and the fourth orders of
small deviations of a system from an equilibrium state
accordingly.
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The probability density of process of one phonon
decay into three in the correspondence with [14] can be
written as

W(P1|P2P3P4)= 277TI/2|Hﬁ|2 (2#)«

Here V' is a volume of a system and H; is an

(15)

amplitude of the process of one phonon decay into three
which can be written in the form

\ P1P2P3D4 M.

H ;= 6p:p, pspy 8V (16)
Here p =0.145 g/cm’ is a density of helium and
M=m® @y
@ 4@ @ 4y a”n
My + M+ M+ My

is a matrix element consisting of seven terms which can
be written as

R

€1 =€2 —€&12
X 2u—1+n3n4 +n3Nn34 +Ngn3, )
x(2u—1+nny +nnj_y +non_y ),

(18)

m@ - €1-2

12 E1—&Q t&122
X 2u—1+n3n4 —N3N3 4 —NgNn3, )
x(2u—1+nmy —nnj_y —Nnonj_y ),

(19)

M, = 4{(u ~1)* + w}, (20)
P q p oc
where n. ==+, ¢,_.=¢&lp;,—-p;|], u=——=2.84,
i i i—j P; pj|) c 8p
2 A2
w=L_ ¢ =0.188. The other terms of Eq. (17), can
¢ 3p?
0
be obtained from the mentioned by replacement of
corresponding  subscripts. We note, that M,

corresponds to the first order of perturbation theory on

I}4, and the others correspond to the second order of

perturbation theory on I}3 .

The first three terms in the right-hand side of Eq.
(17) are resonant. These terms give the main
contribution to amplitude (16). In momentum range
where three-phonon processes are allowed their
denominators can vanish giving the essential divergence
in matrix element. This divergence can be eliminated by
taking the final lifetime of phonon caused by three-
phonon processes into account.

3. THE KINETIC EQUATION
FOR PROCESSES OF ONE PHONON
DECAY INTO THREE
The kinetic equation describing change of distribution
function n; = n(p;) of phonon with momentum p; due
to 1 <> 3 processes can be written as

d 1 1

%=§1d(m)+51c(p1)- @h
Here

Id,c(pl)zIWd,c”d,cé(gg’c)a(pg,cPF’ (22)



where dl'=d>p,d> p3d° py,

Wy =Wpilp2psps) We =Wlpalpipops). (23
ng =nynyng(L+ny ) =ny L+ ny N1+ n3 1+ 14 ), 24)
nc:n4(l+n1)(1+n2)(1+n3)—n1n2n3(1+n4), 25)
£j =6 —&) —63-64.P; =P1 —P2 —P3 —P4.(26)
£ =64 -6 —&) —£3.P; =P4 —P1 —P2 —P3.(27)
We note that the first term of Eq. (21) corresponds to

phonon with momentum p; decay into three and the

inverse process and the second term corresponds to
combining of a phonon with momentum p; with other
two phonons and the process inverse to it.

We consider that in all momentum range (13)
phonons are in equilibrium. In this case their
equilibrium distribution function in the accordance with
Refs. [6, 15] can be written as

-1
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Here u=Nc(1-y) is a drift velocity, which is defined

by the unit vector N directed along the total
momentum of phonon system (an anisotropy axis of
phonon system) and parameter of anisotropy y . In

(28)

isotropic phonon systems y =1. In case corresponding
to experiments [1-3] phonon pulses are strongly
anisotropic phonon systems with y <<1.

To obtain the relaxation rate caused by 1<>3
processes we change the equilibrium number of
phonons with momentum p; on a small value Jn; at
equilibrium distribution of the others phonons. In this
case Egs. (24) and (25) can be rewritten as

2l (l + ngO)XI + ngo)XI + ngo)),

ER .
O
n, =-— m;lllaj ngo)ngo)(l + ngo)) (30)

We define the relaxation rate caused by 1<>3
processes by equality

1 dé)’ll

Vie3 == —

5}1] dt

€2

Substituting (29) and (30) into (21) and taking (31)
into account we have

Viess =Va +Ve, (32)
where
vd :;HLI(O) [ars(e3 blo3 W )
x(1+ngO)X1+n§0)Xl+ng0)))
1 1
Ve Ianl(())de5(85)5(P?)VVc- G

X ngo)n (0)(1 + ngo) ))

3

We note, that in the momentum range (2) nl(o) <<1.

Thus the definition of the decay rate in Ref. [14]
actually coincides with the mentioned above.

4. THE RATE OF PROCESSES
OF ONE PHONON DECAY INTO THREE

Taking (15)-(17) into account we rewrite the relation
(33) in spherical coordinates

Kp 25(.2 k(2
K0 Jm 33 )5(Pd)
X p%pgpi (1 + ngo)XI + ngO)Xl + ngo))

X dpd,dGrdp3de3dCsdpsdg4dCy.

PN e 1
pi 3.212 72517 p?

Having made the integration in (35) with the help of
o -functions we get

(35)

Here £; =1-

2Kp;

Vg = dpodp3d¢,dl3de,
o)

PipiPE (oY o)
x\M2+ M2 M(1+n 0 X1+n 0 X1+n 0 )
{M+ } JR 2 3 4
where
M, =M(cos¢3 :cosgogi),cos% = cos¢£i)), (37)
2 2 Lo
A+ — R
cosqz)gi) _ al( P3L P4L)+052\/_ ’ (38)
24p3,
2 2
() _ al(A—Pu +P4¢)ia2\/E
cosp, = , (39)
24pg4y
Q) =Ppi| — P21 COSPy Ay =Py SINQy, (40)
V)
R=4p2 p3 -(a-p3 -p2, f, 1)
2 2
A=pi| +p31 —2p11prcosey, (42)
2
Pa=pi+pr-p3—¢ piL =piN28i ¢, (43)
+ —_ —_
542191?1 P26r = P363 =9 (44)

P4

The rate of processes of one phonon decay into three
defined by relation (36) consists of two compounds. The
first of them is connected with a spontaneous decay of a
phonon with momentum p;, and the other is caused by

stimulation of a phonon with momentum p; decay due
to the presence of phonon system, i.e. nonzero functions
n,-(o) . As in prevailing momentum range distribution

functions nl-(o) are much less than the unity we will be
interested in the rate of spontaneous decay.
We shall find the decay rate v 0[1 caused by the first

order of perturbation theory on 1}4. In this case
M, =M_=M, and we can get an exact analytical

expression for the rate vé :
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g1(p1) P1<Pmins
) g2(p1)9 Pmin <P1 <P3pp>

vi =N (45)
d g3(p1)7 P3pp < P1 < Pmax»
0, P12 Pmax-
Here
fe=1P +uf
N= u_l) +w l//max (46)
265720500\37°17 p2 ple
492075\/5 11 2 2)
= p ' \117pZ —136p{ ), 47
1(p1) ca0ea P ( De Di 47)
_ 9g21(P1) )
g2(p1) 1601600 \ D3 TP
2 V/4
+p13<pr2nax —pf) gn (171)’(2 (48)
(351712 ~27p2 )py
+ arctan 5 5 B 5 ,
45(p1 ~ Pmin p3pp P
3( 2 2 )2
g3(p)=7-p; (pmax - pi ) g2(p1). (49)
where
g21(p1)=2254448500p12
—83596342875p10 pZ +121429933650 pf p (50)
—88262447850pf p& +33618986820p;! p&
—6231375360p2 pl¥ +423263232p/2,
222(p1)=93500p¢ —157950p p? 1)

+87480p2 pd —15309p8.

Big numerical coefficients in expressions (46) - (51) are
caused by repeated integration of high powers of
momentum.

We note, that the obtained relation for the rate is
valid for all pressures up to 19 bar at which the
dispersion becomes normal and decay processes are
forbidden by conservation laws.

In Fig. 1 the rate vgll calculated with a help of Eq.

(45) is shown. We see, that the rate sharply vanishes
near p; = pPmax- Such behavior of the rate could be

explained by factor (pﬁlax - p12 )z in (49).
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2 4 6 8 10
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Fig. 1. The rate of spontaneous phonon decay into
three in the first order of perturbation theory on 1}4
calculated from Eq. (45)

The integration in case of the second order of
perturbation theory on I}3 cannot be exactly made
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analytically due to the complexity of integrand in (36).
However in this case the integration can be made
numerically. The result of this integration in momentum
range (2) is shown in Fig. 2 (curve 2). As it follows
from the comparison of curve 2 in Fig. 2 with (45), the
main contribution in the momentum range (2) is due to

the second order of perturbation theory on 173 .
1 01 1

E 1 2
10°%
] 3
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o 4 s
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=~ 10°f

10°F

1 ] . . . .

10 0 2 4 6 8
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Fig. 2. Momentum dependences of the rates of three-

phonon processes 1—2 (curve 1), processes of one

phonon decay into three 1—3 (curve 2), h-phonon
creation for three values of delimitating momentum p ;

equal to p., p3,, and ppax (curves 3, 3" and 3’).

Calculations were made with 6, =0, y=0.02 and
T =0.041

5. MOMENTUM THAT DELIMITATES
I- AND h-PHONON SUBSYSTEMS

As it has been already told in introduction the
important question is where we should delimitate /-
and A-phonon subsystems. To answer this question we
start from Fig. 2. In Fig. 2 momentum dependences of
the rates of three-phonon processes (curve 1), processes
of one phonon decay into three (curve 2), four-phonon
processes of high-energy phonons creation with
momenta p>p, for three different values of

momentum p,; which delimitates /- and /4 -phonon

subsystems (curves 3, 3’, 3") are represented.

From Fig. 2 it can be seen, that the rates of three-
phonon processes (1 — 2) and processes of one phonon
decay into three (1—3) are comparable and appear
much greater than the rate of four-phonon processes of
high-energy phonons creation. As a result the
momentum range (2) should be related to /-phonon
subsystem in which equilibrium occurs quickly in
contrast to / -phonon subsystem with p > p. where the
decay processes are forbidden and equilibrium occurs
slowly.

Thus there is a question where we should relate
phonons with momenta from p,,., up to p.. The
calculation of the rates of decay processes in this range
is rather difficult problem as the order of integrals in
this case increases strongly. It is possible only to state,
that due to decay processes the time of establishment of
equilibrium in this momentum range will be less than in
the range of p > p. where the decay processes are
forbidden. Besides this we must take into account that,
as it can be seen from Fig. 2, the rate of four-phonon
processes decreases quickly enough with increasing of
momentum. As a result the momentum p,, that



delimitates phonons of superfluid helium into two
subsystems with different relaxation times can be
considered to be equal to p,., as it was supposed in

Refs. [4,5,8].

6. CONCLUSION

In paper the processes of one phonon decay into
three in anisotropic and isotropic phonon systems of
superfluid helium are investigated. The restrictions on
momenta of phonons which can participate in the
mentioned processes are obtained.

The general relation (35) for the rate v,; of

processes of one phonon decay into three is derived.
With a help of numerical integration of relation (35) the
numerical value of the rate v, caused by the second

order of perturbation theory on I}3 is found. Starting

from the general relation (35) the analytical relation (45)
for the rate of spontaneous decay in the first order of

perturbation theory on 1}4 is derived.

The question about the value of momentum p,,
which delimitates /- and /% -phonon subsystems is
considered and it is shown, that p; isequalto p..
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PEJIAKCAIIUSI, OBYCJIOBJIEHHASA ITPOIECCAMM PACIIAJJA OJJHOT'O ®OHOHA
HA TPU B CBEPXTEKYYEM I'EJIMN

HU.H. Adamenko, F0.A. Kuyenko, K.3. Hemuenxo, B.A. Chunko, A.F.G. Wyatt

[Momy4yeHO aHAIMTHYECKOE BBIPa)KEHUE IJISI YacTOTHI MPOLIECCOB paciaja ofHoro (oHoHa Ha Tpu. Mcxons us3
TIOTyYEHHOTO BBIPQKCHUS, HaHIEHAa YacTOTa CaMONPOHM3BOJIBHOTO paclazga B IIEPBOM IOPSOKE TEOPHU
Bo3MymieHHi. [Toka3aHo, 4TO mpomeccs! pacnana ogHoro (JOHOHA Ha Tpu oOecreynBaroT OBICTPOE YCTaHOBICHHE
paBHOBeCHSI B aHHM3OTPONHBIX W M30TPONHBIX ()OHOHHBIX CHCTEMax. JTO MO3BOJSIET 00JIacTh, B KOTOPOH
PpaspelieHs! MPOIECCH pactaia OJHOTo (JOHOHA Ha TPH, OTHECTH K IOJICHCTEME HU3KORHEPTeTHIECKNX ()OHOHOB.

PEJIAKCALIA, IO OBYMOBJIEHA ITPOHECAMMH PO3IIALY OJHOI'O ®OHOHA
HA TP Y HAATIVIMHHOMY TI'EJIII

LH. Aoamenko, I0.0. Kiyenxo, K.E. Hemuenxo, B.A. Cninko, A.F.G. Wyatt

OTpuMaHO aHANITUYHMI BUpa3 JUIsl YacTOTH MPOLECIB po3naay onHoro (oHOHA Ha TpU. Buxomsuu 3
OTPHMAaHOTO BHpa3y, 3HAHIEHO YacTOTy CaAMOBLIBHOTO PO3Maly B HepIIOMY MOpsAAKY Teopii 30ypeHs. IToxasaHo,
10 TPOIIECH PO3Maxy OTHOTO (POHOHA Ha TpH 3a0e3MeUyIOTh MIBUAKE BCTAHOBICHHS PIBHOBArd B aHI3OTPOIHUX i
i30TponHUX (POHOHHHX cucTeMax. Lle mo3Boiste 00IacTh, Yy SIKii JO3BOJEHI MIPOIECH PO3Maay OZHOTO (OHOHA Ha

TPH, BIZTHECTH IO TiICHCTEMHU HU3BKOCHEPTIHHUX (POHOHIB.
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