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The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation 

obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that 
processes of one phonon decay into three provide a fast establishment of equilibrium in anisotropic and isotropic 
phonon systems. It allows us to relate the momentum region in which processes of one phonon decay into three 
are permitted to subsystem of low-energy phonons. 

PACS: 67.40.Db, 67.40.Fd, 67.90.+z 
 

1. INTRODUCTION 
Liquid helium is the unique medium in which a 

number of interesting macroscopic quantum phenomena 
are observed. One of them is the creation of high-energy 
phonons with energy close to 10 K by a pulse of low-
energy phonons with typical temperature of 1 K (see 
Refs. [1-3]). 

The theory of this phenomenon has been developed 
in Refs. [4,5]. As it followed from the theory, phonons 
of superfluid helium break up into two subsystems: 

1. Subsystem of low-energy phonons ( l -phonons) 
with cpp < . The establishment of equilibrium in this 
subsystem is due to three-phonon processes ( 21↔ ) 
with typical time 1

33
−= pppp ντ  (see Refs. [6,7]). 

2. Subsystem of high-energy phonons ( h -phonons) 
with cpp > . Here decay processes are forbidden by 
conservation laws of energy and momentum and the 
fastest are the four-phonon processes ( 22 ↔ ) with 
typical time 1

44
−= pppp ντ  (see Refs. [4,5,8]). 

There is strong inequality 
pppp 43 ττ <<  (1) 

between pp3τ  and pp4τ . As a result the equilibrium in 
l -phonon subsystem occurs very quickly in contrast to 
h -phonon subsystem where it happens rather slowly. 

The difference in group velocities and rather weak 
connection between h - and l -phonons results to h-
phonon leaving through a rear wall of l -phonon pulse 
and forming of h -phonon pulse which comes to the 
detector after l -phonon pulse. 

However, in Refs. [9,10] it was shown, that three-
phonon processes took place not up to cp  but to 

momentum cpp pp 543 =  and therefore phonons with 
momenta 

cpp ppp <<3  (2) 

should be related to h -phonon subsystem. But in 
momentum region (2) processes of one phonon decay 
into a greater number of phonons (decay processes) are 
still allowed and if the rates of these processes appear 
one order of magnitude with pp3ν  then these phonons 
should be related to l -phonon subsystem. It would 
seem that it is not essential to what subsystem these 
phonons should be related, as the momentum range (2) 
is rather small. However, as it has been shown in 
Ref. [11], the rate of four-phonon processes is very 
sensitive to a numerical value of momentum which 
delimitates l - and h -phonon subsystems. Therefore the 
calculation of the rates of decay processes is of 
undoubtful interest as it will allow us to answer the 
question to what subsystem the mentioned momentum 
range should be related. Here we consider one of these 
processes such as the process of one phonon decay into 
three ( 31↔ ). 

2. PROCESSES OF ONE PHONON DECAY 
INTO THREE 

Conservation laws of energy and momentum which 
should be satisfied in process of one phonon decay into 
three can be written as 

4321 pppp ++= , (3) 
4321 εεεε ++= , (4) 

where ip  is the momentum of i -th phonon 
participating in the process and iε  is its energy which 
we write as 

( ) ( )( )iiii pcpp ψεε +=≡ 1 . (5) 

Here 41038.2 ⋅=c  cm/s is the velocity of sound and 
( )pψ  is a function which describes a deviation of a 

spectrum from linearity which is small ( ( ) 1<<pψ ) but 
nevertheless it completely determines the mechanisms 
of phonon interactions. Here and below we shall use the 
simple analytical approximation of function ( )pψ  
obtained in [7] which is valid for cpp ≤  
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Here maxψ  is the maximum value of function ( )pψ  

reached when 2cpp = . In case of saturated vapour 
pressure 046.0max =ψ  and 10~ == Bcc kcpp  K. 

From conservation laws (3) — (4) taking (5) into 
account we obtain a relation on angles between phonons 
with momenta 1p , 2p  and 3p , 4p  

( )
21

344321
12 2

222
pp

pppp ζφφ
ζ

−+−
= , (7) 

where 4321 ffff −−−=φ , ( )iii ppf ψ= , 

ijij θζ cos1−= , and ijθ  is the angle between phonons 

with momenta ip  and jp . 

Having put 34ζ  and 12ζ  equal to zero in (7) and 
taking (6) into account we derive the boundaries of 
regions in which processes of one phonon decay into 
three can take place 

( ) ( 21213 55
10
1, ppppp −=±  

)22
2212

1 121510155 cppppp +−+−± , (8) 

( ) 1213 , pppp = . 

From the positivity of radicand in Eq. (8) the 
restrictions on momentum 2p  could be obtained: 

( ) ),min(,0max 2122 +− << pppp , (9) 
where 

( ) ( )2
1

2
max112 22

3
1 ppppp −±=± , (10) 

cpp
10
9

max = . (11) 

From Eqs. (8) – (11) it follows, that the momenta of 
phonons participating in 31→  processes can change in 
ranges (see also Ref. [12]): 

min4,3,2 530 ppp c =<< , (12) 

max10 pp << . (13) 

At saturated vapour pressure 75.7~
min =p  K and 

48.9~
max =p  K. 

We note that when pppp 31 <  the processes of one 
phonon decay into three can proceed at rather big angles 
between momenta of interacting phonons while when 

pppp 31 >  the mentioned processes are small-angle. 
Interaction of phonons in superfluid helium is 

described by Landau Hamiltonian which we write as 
(see, for example, [13]) 

430
ˆˆˆˆ VVHH ph ++= .  (14) 

Here 0Ĥ  is a Hamiltonian of noninteracting phonons 
and terms 3̂V  and 4V̂  describe the interaction of 
phonons caused by the third and the fourth orders of 
small deviations of a system from an equilibrium state 
accordingly. 

The probability density of process of one phonon 
decay into three in the correspondence with [14] can be 
written as 

( )
( )6

22
4321

2
12
== π

π
fiHVW =pppp . (15) 

Here V  is a volume of a system and fiH  is an 
amplitude of the process of one phonon decay into three 
which can be written in the form 

M
V

pppp
H fi ρ

δ
8

4321
; 4321 pppp ++= . (16) 

Here 145.0=ρ  g/cm3 is a density of helium and 

( ) ( ) ( )
( ) ( ) ( )

4
4

14
4

13
4

12

2
14

2
13

2
12

MMMM
MMMM
+++

++=  (17) 

is a matrix element consisting of seven terms which can 
be written as 

( )

( )
( ),12

12
21221121

43443343
2121

212
12

−−
++

−

−

+++−×
+++−×

−−
=

nnnnnn
nnnnnn

u
u

M
εεε

ε

 (18) 

( )

( )
( ),12

12
21221121

43443343
2121

214
12

−−
++

−

−

−−+−×
−−+−×

+−
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nnnnnn
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u
u

M
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 (19) 

( ){ }wuM +−= 2
4 14 , (20) 

where 
i

i
i p

p
n = , ( )jiji pp −=− εε , 84.2=

∂
∂

=
ρ

ρ c
c

u , 

188.02

22
=

∂

∂
=

ρ
ρ c
c

w . The other terms of Eq. (17), can 

be obtained from the mentioned by replacement of 
corresponding subscripts. We note, that 4M  
corresponds to the first order of perturbation theory on 

4V̂ , and the others correspond to the second order of 

perturbation theory on 3̂V . 
The first three terms in the right-hand side of Eq. 

(17) are resonant. These terms give the main 
contribution to amplitude (16). In momentum range 
where three-phonon processes are allowed their 
denominators can vanish giving the essential divergence 
in matrix element. This divergence can be eliminated by 
taking the final lifetime of phonon caused by three-
phonon processes into account. 

3. THE KINETIC EQUATION  
FOR PROCESSES OF ONE PHONON 

DECAY INTO THREE 
The kinetic equation describing change of distribution 

function ( )11 pnn ≡  of phonon with momentum 1p  due 
to 31↔  processes can be written as 

( ) ( )11
1

2
1

!3
1 pp cd II

dt
dn

+= . (21) 

Here 

( ) ( ) ( )∫ Γ= ΣΣ dnWI cdcdcdcdcd ,,,,1, pp δεδ , (22) 
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where 4
3

3
3

2
3 pdpdpdd =Γ , 

( )4321 ppppWWd = ( )3214 ppppWWc = , (23) 
( ) ( )( )( )43211432 1111 nnnnnnnnnd +++−+= , (24) 

( )( )( ) ( )43213214 1111 nnnnnnnnnc +−+++= , (25) 

4321 εεεεε −−−=Σ
d , 4321 ppppp −−−=Σ

d , (26) 

3214 εεεεε −−−=Σ
c , 3214 ppppp −−−=Σ

c . (27) 

We note that the first term of Eq. (21) corresponds to 
phonon with momentum 1p  decay into three and the 
inverse process and the second term corresponds to 
combining of a phonon with momentum 1p  with other 
two phonons and the process inverse to it. 

We consider that in all momentum range (13) 
phonons are in equilibrium. In this case their 
equilibrium distribution function in the accordance with 
Refs. [6, 15] can be written as 

( ) ( )
1

0 1exp
−













−






 −
=

Tk
n

B

ii
i

up
p

ε
. (28) 

Here ( )χ−= 1cNu  is a drift velocity, which is defined 
by the unit vector N  directed along the total 
momentum of phonon system (an anisotropy axis of 
phonon system) and parameter of anisotropy χ . In 
isotropic phonon systems 1=χ . In case corresponding 
to experiments [1-3] phonon pulses are strongly 
anisotropic phonon systems with 1<<χ . 

To obtain the relaxation rate caused by 31↔  
processes we change the equilibrium number of 
phonons with momentum 1p  on a small value 1nδ  at 
equilibrium distribution of the others phonons. In this 
case Eqs. (24) and (25) can be rewritten as 

( )
( )( ) ( )( ) ( )( )0

4
0

3
0

20
1

1 111
1

nnn
n

n
nd +++

+
−=

δ
, (29) 

( )
( ) ( ) ( )( )0

4
0

3
0

20
1

1 1
1

nnn
n
nnc +

+
−=

δ . (30) 

We define the relaxation rate caused by 31↔  
processes by equality 

dt
nd

n
1

1
31

1 δ
δ

ν −=↔ . (31) 

Substituting (29) and (30) into (21) and taking (31) 
into account we have 

cd ννν +=↔31 , (32) 

where 

( ) ( ) ( )
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1

1
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1

0
4
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3

0
2

0
1
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n
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1

1
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1

0
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0
3

0
2

0
1

nnn

Wd
n

cccc

+×

Γ
+

= ΣΣ∫ pδεδν
 (34) 

We note, that in the momentum range (2) ( ) 10
1 <<n . 

Thus the definition of the decay rate in Ref. [14] 
actually coincides with the mentioned above. 

4. THE RATE OF PROCESSES  
OF ONE PHONON DECAY INTO THREE 
Taking (15)-(17) into account we rewrite the relation 

(33) in spherical coordinates 

( ) ( ) ( )
( )( ) ( )( ) ( )( )

.
111

1

444333222

0
4

0
3

0
2

3
4

3
3

3
2

2
0

1

1

ζϕζϕζϕ×

+++×

δεδ
+

=ν ∫ ΣΣ

dddpdddpdddp
nnnppp

M
n

Kp
ddd p

 (35) 

Here 
i

i p
Npi−=1ζ , 

2751223
1

ρπ =⋅
=K . 

Having made the integration in (35) with the help of 
δ -functions we get 

( )( )
{ } ( )( ) ( )( ) ( )( ),111

1

2

0
4

0
3

0
2

2
4

3
3

3
222

232320
1

1

nnn
R

ppp
MM

ddddpdp
nc

Kp
d

++++×

+⋅
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∫ ϕζζν

 (36) 

where 
( ) ( )( )±±

± === 4433 coscos,coscos ϕϕϕϕMM , (37) 

( ) ( )
⊥

⊥⊥± −+
=

3

2
2
4

2
31

3 2
cos

Ap
RppA αα

ϕ
∓

, (38) 

( ) ( )
⊥

⊥⊥± ±+−
=

4

2
2
4

2
31

4 2
cos

Ap
RppA αα

ϕ , (39) 

2211 cosϕα ⊥⊥ −= pp 222 sinϕα ⊥= p , (40) 

( )22
4

2
3

2
4

2
34 ⊥⊥⊥⊥ −−−= ppAppR , (41) 

221
2
2

2
1 cos2 ϕ⊥⊥⊥⊥ −+= ppppA , (42) 

φ−−+= 3214 pppp 22 iiii pp ζζ −=⊥ , (43) 

4

332211
4 p

ppp φζζζ
ζ

−−+
= . (44) 

The rate of processes of one phonon decay into three 
defined by relation (36) consists of two compounds. The 
first of them is connected with a spontaneous decay of a 
phonon with momentum 1p , and the other is caused by 
stimulation of a phonon with momentum 1p  decay due 
to the presence of phonon system, i.e. nonzero functions 
( )0
in . As in prevailing momentum range distribution 

functions ( )0
in  are much less than the unity we will be 

interested in the rate of spontaneous decay. 
We shall find the decay rate I

dν  caused by the first 

order of perturbation theory on 4V̂ . In this case 

4MMM == −+  and we can get an exact analytical 

expression for the rate I
dν : 
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Here 
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3265720500

1
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where 
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( )
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6
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cc

c
ppp

ppppg
−+

−=  (51) 

Big numerical coefficients in expressions (46) - (51) are 
caused by repeated integration of high powers of 
momentum. 

We note, that the obtained relation for the rate is 
valid for all pressures up to 19 bar at which the 
dispersion becomes normal and decay processes are 
forbidden by conservation laws. 

In Fig. 1 the rate I
dν  calculated with a help of Eq. 

(45) is shown. We see, that the rate sharply vanishes 
near max1 pp = . Such behavior of the rate could be 

explained by factor ( )22
1

2
max pp −  in (49). 

 
Fig. 1. The rate of spontaneous phonon decay into 

three in the first order of perturbation theory on 4V̂  
calculated from Eq. (45) 

The integration in case of the second order of 
perturbation theory on 3V̂  cannot be exactly made 

analytically due to the complexity of integrand in (36). 
However in this case the integration can be made 
numerically. The result of this integration in momentum 
range (2) is shown in Fig. 2 (curve 2). As it follows 
from the comparison of curve 2 in Fig. 2 with (45), the 
main contribution in the momentum range (2) is due to 
the second order of perturbation theory on 3V̂ . 

 
Fig. 2. Momentum dependences of the rates of three-

phonon processes 21→  (curve 1), processes of one 
phonon decay into three 31→  (curve 2), h -phonon 
creation for three values of delimitating momentum dp  
equal to cp , ppp3  and maxp  (curves 3, 3′ and 3″). 
Calculations were made with 01 =θ , 02.0=χ  and 

041.0=T  

5. MOMENTUM THAT DELIMITATES  
l- AND h-PHONON SUBSYSTEMS 

As it has been already told in introduction the 
important question is where we should delimitate l - 
and h-phonon subsystems. To answer this question we 
start from Fig. 2. In Fig. 2 momentum dependences of 
the rates of three-phonon processes (curve 1), processes 
of one phonon decay into three (curve 2), four-phonon 
processes of high-energy phonons creation with 
momenta dpp >  for three different values of 
momentum dp  which delimitates l - and h -phonon 
subsystems (curves 3, 3′, 3″) are represented. 

From Fig. 2 it can be seen, that the rates of three-
phonon processes ( 21→ ) and processes of one phonon 
decay into three ( 31→ ) are comparable and appear 
much greater than the rate of four-phonon processes of 
high-energy phonons creation. As a result the 
momentum range (2) should be related to l -phonon 
subsystem in which equilibrium occurs quickly in 
contrast to h -phonon subsystem with cpp >  where the 
decay processes are forbidden and equilibrium occurs 
slowly. 

Thus there is a question where we should relate 
phonons with momenta from maxp  up to cp . The 
calculation of the rates of decay processes in this range 
is rather difficult problem as the order of integrals in 
this case increases strongly. It is possible only to state, 
that due to decay processes the time of establishment of 
equilibrium in this momentum range will be less than in 
the range of cpp >  where the decay processes are 
forbidden. Besides this we must take into account that, 
as it can be seen from Fig. 2, the rate of four-phonon 
processes decreases quickly enough with increasing of 
momentum. As a result the momentum dp , that 
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delimitates phonons of superfluid helium into two 
subsystems with different relaxation times can be 
considered to be equal to cp , as it was supposed in 
Refs. [4,5,8]. 

6. CONCLUSION 
In paper the processes of one phonon decay into 

three in anisotropic and isotropic phonon systems of 
superfluid helium are investigated. The restrictions on 
momenta of phonons which can participate in the 
mentioned processes are obtained. 

The general relation (35) for the rate dν  of 
processes of one phonon decay into three is derived. 
With a help of numerical integration of relation (35) the 
numerical value of the rate dν  caused by the second 

order of perturbation theory on 3V̂  is found. Starting 
from the general relation (35) the analytical relation (45) 
for the rate of spontaneous decay in the first order of 
perturbation theory on 4V̂  is derived. 

The question about the value of momentum dp , 
which delimitates l - and h -phonon subsystems is 
considered and it is shown, that dp  is equal to cp . 
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РЕЛАКСАЦИЯ, ОБУСЛОВЛЕННАЯ ПРОЦЕССАМИ РАСПАДА ОДНОГО ФОНОНА  

НА ТРИ В СВЕРХТЕКУЧЕМ ГЕЛИИ 
И.Н. Адаменко, Ю.А. Киценко, К.Э. Немченко, В.А. Слипко, A.F.G. Wyatt 

Получено аналитическое выражение для частоты процессов распада одного фонона на три. Исходя из 
полученного выражения, найдена частота самопроизвольного распада в первом порядке теории 
возмущений. Показано, что процессы распада одного фонона на три обеспечивают быстрое установление 
равновесия в анизотропных и изотропных фононных системах. Это позволяет область, в которой 
разрешены процессы распада одного фонона на три, отнести к подсистеме низкоэнергетических фононов. 

РЕЛАКСАЦІЯ, ЩО ОБУМОВЛЕНА ПРОЦЕСАМИ РОЗПАДУ ОДНОГО ФОНОНА  
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Отримано аналітичний вираз для частоти процесів розпаду одного фонона на три. Виходячи з 

отриманого виразу, знайдено частоту самовільного розпаду в першому порядку теорії збурень. Показано, 
що процеси розпаду одного фонона на три забезпечують швидке встановлення рівноваги в анізотропних і 
ізотропних фононних системах. Це дозволяє область, у якій дозволені процеси розпаду одного фонона на 
три, віднести до підсистеми низькоенергійних фононів. 


