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The parametrical evolution of the one-component order parameter under the spontaneous symmetry breaking in
the Michelson model is considered. A critical behavior of a system with the critical point which has the properties
of both the Lifshitz point of arbitrary order and the multicritical point is investigated. Critical dimension of such
systems was found. The scale variational invariance of the model is discussed.
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1. INTRODUCTION

Spontaneous symmetry breaking is one of the most
important ideas of the modern physics. It arises in the
various fields of physics and gives one the possibility to
describe the phenomena which, at first sight, have noth-
ing common from the general point of view. In particu-
lar the notion of spontaneous symmetry breaking is a
background of the Landau theory of the phase transi-
tions (PT) of the second kind which allow one to de-
scribe the critical phenomena in the different physical
systems in a general way. Therefore the problem of de-
termination of the field of validity of the Landau theory
is one of the most important problems in the theory of
critical phenomena. The important criterion of the valid-
ity of the Landau theory is the dimension of the space.
If the dimension of the physical space is lager than cer-
tain value called critical dimension (CD) then the Lan-
dau theory is valid, otherwise one needs to use more
complicated methods to investigate the critical phenom-
ena in vicinity of critical point (CP). One of the prob-
lems discussed in this paper is the CD of the systems
which allow the CP with the properties of both the mul-
ticritical points and Lifshitz points. The parametrical
evolution of a one-component order parameter (OP) in
the Michelson model is also discussed.

2. PARAMETRICAL EVOLUTION
OF ORDER PARAMETER

In order to describe the phase transition in a system
with one-component OP, which allows the incommen-
surable structures of OP, the thermodynamic potential
may be written in following form:
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Here L is a size of a system, @' is a spatial derivative
of OP ¢(x) and g,y,q, p are the material parameters.
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The spatial distribution of OP is defined by the solu-
tion of the following Eulier — Poisson variational equa-
tion for the functional (1):

o1 +glp2"+20(0")
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Eq. (2) is a fourth order nonlinear differential equa-
tion. General solution of the equation (2) is unknown to

this day, but there are methods to obtain a partial solution
of eq. (2). One of the possibilities to analyze the equa-

’)

tions of this type is to represent (p'2

02 =7(o). 3)
and substitute it into eq. (2). In particular, if the function
V((p) is the polynomial of third order of @(x) then the
solution of eq. (2) is expressed through the Jacobi elliptic
functions. Furthermore, if the functional (1) has some
additional symmetries then the substitution (3) allows one
to find a soliton-like distribution of OP.

We will carry out the qualitative analysis of the
parametrical evolution of OP for the model (1) in the case
2>0 and:

V(p)=a,+a9’ +a,0". 4)

Here the coefficients aq,,a,,a, are the functions of
&,Y.4,P -

I. In high-symmetric phase ¢(x)=0. Initial state

has translational symmetry (it is invariant under the
transformation x - x +x,, where x, is an arbitrary

as function of @(x):

translation in the coordinate space), and initial states are
invariant under the transformation ¢ — —¢ and

x = —x . This situation is illustrated in Fig 1. All the
figures presented consist of 2 graphs, the first one
shows the dependence of @'> on ¢, the second one
illustrates the dependence of OP on the coordinate x .
II. The PT to the phase MSI1 takes place when
qg=y"’ /4. The OP ¢(x) =0, therefore the spatial dis-

tribution of OP may be found in the linear approxima-
tion from eq. (2) (see Fig. 2):
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Fig. 1. Initial high-symmetric phase
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Fig. 2. Modulated structure MS1
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Fig. 3. The evolution of phase MS1

¢(x)=a, -cn(b,x,k, )~ a-cos(cx)

+a -cos(3¢x) + ..., 5)

Here the parameters @, a , c are certain functions
of initial parameters a,, b,, k.. The OP ¢ is a peri-
odic function.

The invariance under the reflection (¢ — —¢ ) is
broken in phase MSI, and the translation invariance is
reduced to the operation x — x+X,, where X, is value
divisible by the period of OP, and the average value of
the OP ((p(x))T =0.

Thus the OP is locally not invariant under the reflec-

tion, but globally it preservs the invariance under the
transformation ¢ — — .
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Therefore the periodical distribution of OP ¢(x) is the

reaction of the system on appearance of locally nonzero
OP and it restores the broken symmetry ¢ — —¢ . Ap-

pearance of a local order not at ¢ =0 (as in a homogene-
ous case), but at g =y’ / 4>0, is an example of a “ther-
modynamic” mechanism of a shift of the point of PT.
Sign reversal of parameter g, in eq.(4) leads to the
arising of the new peculiar properties of the dependence
of (p'z(x) on ¢ (Fig. 3). Such a behavior of the OP real-
ized in the model of an elliptic cosine if 0.5 < k* <1.0 .
III. Let us consider the point of PT from the phase
MS1 to the phase MS2. The value of ¢'*(x) vanishes at

¢ =0 (Fig. 4).
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Fig. 4. The point of the PT from MS1 To MS?2

In this situation ¢, =0 and a, #0 in eq. (4). The

distribution of the OP has the following form:
¢(x)=a,-cn(b.x,1)

A

a
=———=gqa,-dn(b,x,1), 6
chio) (byx,1) (6)
here the parameters a,w,a,,b, are certain functions of

the material parameters. and the period of the OP is
T=cw.
Translation invariance of ¢(x) is completely break-

ing ((p(x))T #0.

Fig. 5. Phase MS2
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IV. Arising of the new phase MS2 (Fig. 5). The OP
distribution may be described by the following equa-
tion:

o(x)=a, -dn(b,x,k,), 0.0<k, <1.0. @)
As one can see (¢(x)), # 0. This solution is invari-
ant under translations x — x+ X, . If the structures with
the values of the OP —p and +¢ are physically equiva-

lent then the both of them can be realized as separate
region.
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Fig. 6. The final low-symmetric phase

V. Low-symmetric phase. The system turns into the
state illustrated by Fig. 6. The translation invariance of the
OP (x = x + x, ) is completely restored. The values of the

OP are ¢(x) =@, , where ¢, is a nonzero constant.

[
We note that the numerical calculations in the ap-

3
proximation ¢ = a@®* confirm the results of the
i=0

qualitative analysis.
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3. CRITICAL DIMENSION

One of the most important properties of the models
which describe the system with critical phenomena is

the existence of the critical dimension (CD). In the ¢*

model which describes the phase transition (PT) in the
usual critical point (CP), the CD is equal to 4. However,
in the models which describe the PT in the system with
both the multicritical and the Lifshitz points the CD
differs from 4 and depends on the power of nonlinearity
of the model and the order of the Lifshitz point.

To describe the critical phenomena in the systems
with the Lifshitz point one needs to take into account
the higher gradients of OP. The CD of such models is

d, =4(p+1), where g is the order of higher gradi-

ents. Describing of the critical phenomena in the sys-
tems with the multicritical points requires to take into
account in effective Hamiltonian the terms with higher
nonliniarities of the OP. The CD in this case has the

form d,=4(N+1)/(N—-1), where N is the power of

the nonliniarity of the model.

In this paper we investigate the critical behavior of
the system with the critical point which has the proper-
ties of a both the Lifshitz point of the arbitrary order
and the multicritical point.

The effective Hamiltonian of the system in the vicin-
ity of the aforementioned critical point may be written

as:
N
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where # is the one-component OP, d is the dimension of
the physical space, 7, y, J, S are the material parameters.
We assume that the physical space may be divided into
two subspaces with the dimensions d-m and m. In the
first one, denoted by c, there are no wave vectors of
modulation. In other one, denoted by i, the wave vectors
of modulation are present. We assume that d and m may

H= J‘dmx,.d“”mxc

be considered as continuous variables and, of course,
d>m. A_ and A, are the Laplacian operators in sub-

The
tors A’ = A(AH) , if [ is non-integer number, then A’

spaces ¢ and i, respectively. opera-

should be understood as the pseudodifferential opera-
tors defined with help of the integral Fourier transforms.
In the CP r=y=0 and the other parameters of the model
(8) are positive constants.

We will find the CD of the model (8) from condition
of stability of the fixed point of the renormgroup trans-
formation for the Hamiltonian (8). This condition looks
in following way:

d>d =m|1-L]| V4L 9)
p N -1

If the dimension of physical space is more then d,

than the Landau theory is valid, otherwise it is invalid
due to the anomalous increase of the OP fluctuations in
the vicinity of CP.

The space with the dimension which coincides with
the CD has some interesting properties. In such space
the model which describes the PT is renormalizable and
allows the variational scale symmetry. The variational
scale invariance of the model is the important property
which may be useful in the analysis of the correspond-
ing variational equations.
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CIIOHTAHHOE HAPYIIEHUE CUMMETPHUHN B TEOPUU MOAYJIMPOBAHHBIX CTPYKTYP

A.B. Baouu, C.B. bepesosckuii, B.®D. Knenukos

PaccmoTpena nmapameTpHueckasi IBOJIOIMS OJHOKOMIIOHEHTHOTO MapaMeTpa MopsaKa IpU CIOHTAaHHOM Hapy-
LIEHUH CUMMETPHH B Mojien MuxenbcoHa. J{ist MoJienu, MMo3BOIISIONIEH ONMMCHIBaTh (Pa3oBbIe IMEPEXoabl BOIN3N
KPUTHYECKHX TOYEK, 00JIQIA0MNX OJHOBPEMEHHO CBOIcTBaMM To4eK JIndmnia npon3BoIsHOTO MOPSAAKA U MYJb-
TUKPUTHYIECKUX TOYEK, HalIeHa KPUTHYECKast pa3MepHOCTh. OOCyskaeTcsi BapHalllOHHAasl MacITabHasi CHMMETPHS

JUISE TAKUX MOJEJIEH.

CHOHTAHHE MOPYIIEHHSI CUMETPIi B TEOPIi MOJIYJIbOBAHUX CTPYKTYP
A.B. Baoiu, C.B. bepe3oecovkuit, B.®D. Knenikos

Po3risHyTO apaMeTpUyYHy EBONIOLII0 OJJHOKOMIIOHEHTHOTO MapaMeTpa IOPSIKY P CIIOHTAHHOMY TTOPYIICHH]
cumetpii B moneni Mixenbcona. s mozerni, sika 103BOJIsiE onHCyBaTh ($a3oBi MEPETBOPEHHS NMOOJIN3Y TOUYOK, SKi
BOJIHOYAC MAlOTh BJIACTHBOCTI TOYOK JIimInis JOBUIEHOTO MOPSAKY 1 MyJIBTUKPUTUYHUX TOYOK, 3HAWIEHO KPUTHU-
YHY po3MipHicTb. OOTroBOPIOETHCS BapialliiiHa MacIiTabHa CUMETPisl Ul TAKUX MOJEJIEH.
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