DENSITY OF STATES OF INTERACTING TWO-LEVEL SYSTEMS
IN AMORPHOUS SOLIDS IN THE MEAN RANDOM FIELD
APPROXIMATION

A.A. Borisenko

National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
e-mail: borisenko@kipt.kharkov.ua

The mean random field approach [1,2] is generalized to the case of random (with certain distribution) values of
tunneling matrix elements and double-well potential asymmetries and applied to account for the dipole interaction
between two-level systems in glasses. The obtained mean random field distribution function is used to calculate the
interaction-modified density of states of the two-level system ensemble. Taking the realistic values of phenomenol-
ogical parameters, only a minor correction to the low-energy density of states is found.
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1. INTRODUCTION

In the sub-Kelvin temperature range nonmetallic
glasses display a variety of universal physical properties,
which are usually attributed to the specific low-energy
excitations, present in all amorphous solids. A model of
tunneling systems (TS) is very popular for description of
a variety of interesting phenomena, related to thermal, di-
electric and acoustic properties of glasses in this tempera-
ture range [3]. Though the microscopic origin of TS in
glasses remains not completely clear (see however, results
of the recent simulations [4]), it is assumed that in glasses
they are present with a low (about 10°...10™* per atom)
concentration due to the possibility of realization of two
(or more) spatial configurations in a group of several at-
oms, with the mean variation of bond length Aa <0.1a
(a being the mean bond length) and bond angle

Ap <£10° in the group. It is also assumed that these

structure configurations are separated by the low potential
barriers V' /k, <100K (%, being the Boltzmann’s con-

stant) and that the differences of energies in the potential

minima of these configurations U, —U,, ;| <<V . At

min;
low temperatures only the ground states in each potential
minimum are relevant. In this way, in the simplest case a
TS can be introduced as an effective particle moving in a
double-well (W) potential, in which in the temperature
range k,T <V the quantum tunneling transitions be-

tween the potential minima are dominant. That is why the
TS ensemble is governed by the Gibbs statistics in the
whole temperature range if the characteristic time of per-
turbation change is greater then the inverse value of the
minimal tunneling frequency.

Due to the overlap of the ground-state (GS) wave-
functions in two wells the GS energy level splits into a
doublet with a gap, which in the quasiclassical approxi-
mation (see e.g. [5]) equals to:

U=vA +J?, (1)
where
7= encn) )
T
and
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A~ IN2mV Ik, (3)

A is a difference of the GS energies in two wells; J is
a tunneling matrix element between GS’s in two wells;
®, is a frequency of GS oscillations (of the order of

Debye frequency), A is an overlap phase; m is an ef-
fective TS mass; V is a height of potential barrier above
the GS energy level; / is a width of classically inacces-
sible region between the potential minima.

The introduced above quantum system is usually
called a two-level system (2LS). The 2LS concept for
amorphous solids was introduced by Phillips [6] and
Anderson et el. [7] to account for their low-temperature
anomalous behavior.

Due to the difference of relative spatial locations of
(at least partially) ionized particles, corresponding to the
2LS states in minima of a W-potential, these states can
be assigned to the eigenvalues of 2-state electric dipole
moment operator (pseudospin-1/2).

Due to the structural disorder on the atomic scale in
glasses the 2LS parameters A and A are believed to
have a wide distribution.

The 1-particle distribution function over the parame-
ters A and A for non-interacting 2LS is usually con-
sidered as uniform in the whole range (see e.g. [3]):
B(A1)=PO(4,,, —2)0(8)0(k,, ~2)JO(R ~2y),  (4)
which after transformation to variables (A, J) takes the
form:

Rl(8.)= "0, A8, -~ ~1y). O

where P is a material constant, G)(x) is a step function.

The 2LS volume concentration n is related to the

distribution function (5) in the following way:
J,

Tdi T"dJPO' (A,J)=PA,,, 1n% : (6)
0

J.

“min

A
n=
min

The non-interacting 2LS model in the temperature
range 7 >100mK is satisfactory to describe most of
the phenomena occurring in cold glasses, e.g. the linear
term in the temperature dependence of heat capacity, the
minimum (maximum) in the temperature dependence of
dielectric susceptibility (sound velocity), the electro-
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magnetic and ultrasound absorption, polarization ech-
oes, relaxation processes, etc.

However, the recent experiments displayed some
discrepancies with the predictions of non-interacting
2LS model in the temperature range 7 <100 mK . For
example, the temperature dependence of both the low-
frequency dielectric susceptibility and the sound veloc-
ity after passing the extremum towards low tempera-
tures is less steep, with a tendency to saturation at ul-
tralow temperatures [8]. The temperature dependences
of internal friction and of decay time of spontaneous po-
larization echo are also unexplainable from these grounds.
Even more surprising, there was found a sort of phase
transition in amorphous BaO-Al,0;-SiO, at the tempera-
ture 5.84 mK, accompanied by a kink on the temperature
dependence of dielectric constant [9].

It is natural to try to account for the discrepancies
mentioned above by considering dipole-dipole (electric
or elastic) interaction in the 2LS ensemble. The effect of
dipole interaction on TS density of states was first con-
sidered in the pair approximation by M. Klein [10] for a
set of randomly distributed symmetric TS with equal
tunneling amplitudes, the model which is applicable for
the case of off-center impurities in crystals. It was found
that strong interaction between a pair of TS gives rise to

low-energy excitations with the gap of order E ~.J* /U,
J and U being the tunneling matrix element and the inter-
action energy respectively. Later A. Burin [11] considered
interaction in the ensemble of 2LS obeying distribution
Eq.5 with random spatial distribution and found a de-
crease in the low-energy DOS, the so-called pseudogap
effect. A. Wiirger [12] used the Bloch’s equations for 2LS
polarization components to consider the interaction-
induced collective excitations in the 2LS ensemble. The
interaction effect is shown to decrease the resonant and to
increase the relaxation part of susceptibility. This result is
consistent with the data for temperature dependence of di-
electric constant (see e.g. a review paper Ref. [8]).

However, both Klein’s [10] and Wiirger’s [12] ap-
proaches have a common shortcoming of considering
only the symmetric 2LS, the assumption inapplicable to
glasses. The Burin’s work [11] employs the approach
elaborated for disordered Coulomb systems. These sys-
tems also allow the description in terms of two-state
variables (corresponding to the occupied and empty
state of a site), but there the conception of tunneling
matrix elements is meaningless. And the way of taking
interaction into account is similar to that of Klein [10]
in using the pair approximation (see Eq.(19) in
Ref. [11]). So, the result for DOS obtained there is
really applicable to the non-tunneling 2LS, which is not
a good approximation for glasses. It would be useful to
perform calculations of DOS in the pair approximation
[10] for the case of random asymmetries and tunneling
matrix elements.

The present work employs the approach developed
for description of systems undergoing orientation glass
transition (see [13,14] and refs. therein). It uses the
method of mean random field (MRF) [1,2], elaborated
for crystals with off-center impurities. The distribution
function is constructed for the random fields, induced
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by the dipole moments of the neighboring 2LS at a site
of arbitrary chosen 2LS, averaged over the distribution
(5) and over the uniform and independent spatial and
orientation distribution of 2LS. Then the self-
consistency condition is applied, i.e. the distribution func-
tion is taken to be the same for all 2LS in the ensemble.
The obtained MRF distribution function is subsequently
used to calculate the renormalized 2LS DOS.

Though the application of this method to orientation
glasses finds numerous objections due to neglecting in-
teraction-induced mutual orientation correlations of
spins (see e.g. Ref. [14] and refs. therein), we apply it
here to the 2LS ensemble for the next reason. As it was
mentioned above, even non-interacting 2LS in glasses
have random asymmetries of W potentials and hence
each 2LS has random static polarization at any finite
temperature. It means that the 2LS ensemble has a
property of initially randomly broken symmetry. That is
why this system does not possess a critical point of ori-
entation glass transition, as the off-center impurities or
dilute spin systems do, but rather demonstrates a continu-
ous increase of interaction energy as the temperature is
decreased (see Fig. 1 below). So, the critical point, which
is thought to be sensitive to interaction-induced orienta-
tion correlations, is avoided here. For the case of random-
field 3D Ising model this result is confirmed in Ref. [16].

Below we consider the case of electric dipole-dipole
interaction. Since the elastic interaction between 2LS
can be included in the same formal way [3], the gener-
alization of our approach is straightforward.

2. MEAN RANDOM FIELD DISTRIBUTION
FUNCTION

Consider a set of N+1 2LS randomly distributed
over the volume V of weakly polarizable medium.

The Hamiltonian of arbitrarily chosen 2LS with
number { may be represented as a sum of non-
interacting term and the term due to interaction with
neighboring 2LS:

Hi=Ho +H,,.. @)
The explicit form of Hamiltonian (7) in the pseu-
dospin-1/2 representation is:

. 1 1 . 1.
Ho, :EG;AOI' +50§J0,-, Hipy; zEG;Adipia (®)
where

OA;
Adipi = Z(a_el

‘ei]fz(di'ei)a ©)

e;=0
d; being the electric dipole moment of 2LS i; e; being
the strength of electric field, induced by all the other
2LS at the site of 2LS 7.

In Eq. (8) we neglected the effect of interaction on
the off-diagonal elements of 2LS Hamiltonian, because

in most cases |8J /8e| << |8A/6e|. This means that di-
agonal elements of the dipole momentum operator in

the coordinate representation have much greater abso-
lute values compared to the off-diagonal ones:

W rWdr| >> [V rW dr|, i,j=R,L,
U ! ' ‘ U i J




the fact which follows from the condition of small over-
lap of single-well wavefunctions:

W dr|>> || Y dr|, i,j=R,L.
U Lot ‘ U i ‘

Hamiltonian (7) may be rewritten as:

N 1 1
Hi:EG;Ai'FEG;JOi, Al-=A0,-+2(d,-~ei). (10)

In the energy representation Hamiltonian (10) takes
the form:

I:Ii:%GéUin U, :\/(A0i+2(di'ei))2+']0i2 (11)
Using (11), the single-particle free energy of 2LS
may be written as:
F, =—k,TIn| 2cosh Y, . (12)
2k, T

The expression for 2LS polarization may be ob-
tained by differentiation of the free energy (12) with re-
spect to the electric field strength (see e.g. [15]):

_OF;
= 13
PG, (13)
or in the explicit form:
= di(AOi + z(ei ) dz)) tanh Ui ) (14)
; 2k,T

Then the expression for thermodynamic average of
the electric field strength, induced by the dipoles of
neighboring 2LS at the site r;, has the form:

b
€ = 2_3[pj_3(pj U} ]
J#i Tij
Here 7, and f‘i/. denote the distance between 2LS i

(15)

and j and the unit radius-vector between them respec-
tively; b=1/g,e, stands for the constant of Coulomb

interaction in a given medium.

Suppose that 2LS coordinates are distributed over
the volume ¥ randomly and independently. Then the N-
particle 2LS coordinate distribution function can be rep-
resented as:

fle)=(2m)7 [dp-explip- e)[ 4an

[ar [das(d|-a
() v ()

™ ({rf)=v" (16)
and the normalized to unity N-particle distribution func-
tion of dipole moments, potential asymmetries and tun-
neling matrix elements has the form:

R las,s)=[[Lsla-a)

where the factor of 4n in the denominator means that
the vectors d, which have equal absolute values d, have
a uniform angular distribution.

Given the definite values of parameters of all the
neighboring 2LS {e,d,r,AO,J } , the induced field
e,(le.d,r,A,,J}) at the site r, is a definite value and
may be calculated with the formula (15).

In this case the distribution function of induced
fields has the form:

fole)=5|e- z%[l)j -

Jj#0'0

a7

3{e; o oy ]

To calculate the self-consistent (averaged over the
2LS ensemble) distribution function of induced random
fields f (e) one has to take into account that at transi-

tion between different 2LS the parameters {e,d,r,AO,J }

of neighboring 2LS change as random values, obeying
the distribution function:

Plled,r, A, ) =T"(IrR",,, (14,45, /X f(€))", (19)

where f(e) is the sought distribution function of in-

(18)

duced mean random fields.

Then, by averaging Eq. (18) over the distribution
function (19) and also applying the standard representa-
tion of Dirac & -function in the form of Fourier integral

1 o0

O0(x)=—= |explix-pkp,

()= oy el o

one obtains an integral equation for the self-consistent
mean random field distribution function:

) Jang T Tl ex -5 ) (p~f)(p-f)]j-f(e’)J @)

J, min (e

The procedure of obtaining Eq. (20) from Eq. (18) is called the mean random field (MRF) approximation. Con-

sider Eq. (20) in the form:
=) -y o122
(p) N

where

N(p>=§Jdr(J;fdsﬂd|— )IdAoJ 7 T e L )| | WO

mm

Assume p to be the direction of axis z. Let 6,0,0"
be the angles between r and p, p and p, p and r re-
spectively.

Then, according to [1], the angles 6,0',0" obey the
relation:

@n

(22)

c0s0" = cos0 cosd’ +sind sind’ cos(p —¢'). (23)
Let

F(979’7¢ _(P'): (24)

- % [(1+3c0s26 )cos® ' +3sin 20 sin®cos(p —¢ ')}
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We introduce the new variables:

z=|F(9 0,0 —(p’lpbp 7, (25a)

2, =|F0.0.0 -9 Ybpp - R,

(25b) |

21 1 2n A

Php | 2 B Jwgr (- cosz4isgn(F)si
N(p):ﬁ_fldcosefdﬂdcose [ do gdAo J deefdz[ cos 2 +isgn )smzj

0 -1 0
x|F©0.,0",0 -0 p(Ag +(e"-d).J)1 (')

J,

Since

]sinedezfd(p\F(e,e',@ ~¢")-sgn(F)=0> 27
and O

1im]gSinZdz~—lnzl ~InR, - o> (28)

70 2
4

the value of Im N (p) in Eq. (26) is ambiguous, depend-

z

ing on the order of integration. If one first integrates
over the angles, and then allows R, — oo, then
ImN(p):O, in the opposite case ImN(p)iO. We

consider the next physical reasons. The value of integral
(27) may be considered (neglecting the constant factor)

as an average value of function (24) with respect to the|

min

z, = |F(9,9’,(p —(p’)bpp ‘R (25¢)
Here R, is the minimal distance allowed between

2LS, R, satisfies V' = 4/3nR; .

Then, using (23) — (25), one obtains from (22):

22 (26)

e) z

fle)=(2n)” [dfiexplifie)

[ arguments (0,¢ ). Consider an ensemble of finite number
N of 2LS.

For this ensemble the condition
N

lim N> F0©,.0/,0, —9/)=0 will hold. And the mean
i=1

N—o

square fluctuation of this value over the ensemble will be

13 R b0 )
FEF(eiaeivq)i_(pi)zFejseja(Pj -9 NWNRT%.

j=1
Taking this value as an upper limit of (27) and mul-
tiplying it by (28), one obtains in the limit R, — o
zero. That is why ImN(p)=0.
Now we let V' —> o, N — . Taking into account
that 31230 z, =0, we obtain from Eq. (21)

()
pb b 2t 0w 2n pp(e')bno-‘F‘ 1— cosz (29)
xexp —1— J. dey-(e’Xp(e’)>Isin6d6 Id¢jsin9 ’d@’.[d(p’|F(6,9’,(p -¢') .[ ( 2 ]dz \
(e") 0 0 0 0
where 1, = R, and
_ Bma ma gy |A +e’dcosS| \/(AO +e'dcos€})2 +J?
(ple)=Pd [dry | = 0 tanh (30)

0 Jmin J \/(AO +e'd cosS)2 +J?

Here 9 is an angle between €' and d.
Let us introduce the next notation:

t
g(t):jl_czoszdzzCOS;"HSU, (31)
0

z

.
where we denote sit = I wdy .
0o Y
As the next approximation we substitute the argu-
ment of function g in Eq. (29) by infinity:

g(pp(e')bno : |F|) — g(o0)= T (32)

x
p (e’)no ~To 551, since

(ple)) n
function g in Eq. (31) significantly depends on its ar-
gument only in the vicinity of zero and at

This is reasonable for
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2kpT

p> (bno ple')F |)71 is close to its limit value
gloe)=m/2. (32)

p< (bnop(e')|F|)_l, ie. at the field
e>bn, p(e']F

sitions of 2LS. In this way, by using (32), we neglect
such configurations.
Then we introduce notations:

Approximation fails at
strength

, which occurs for the close (r~ R) po-

(F)= %jde 'sin® 'qu)'jde sin@ 2f01<p|F(e 0.9-0) (33)
n 0 0 0 0
and
D(T)= %b(F) If(e')(p(e’))de’ )
()

It is worth noting that, though the direction of vector
p may differ from that of d (p N d) when

(34)



A, +(d-e)< 0 for a given 2LS and, consequently, the

spatial distribution of vectors p may not, in principle, be
isotropic, as it (by the model assumption) does for vec-
tors d, it nevertheless may be, with a good accuracy,
taken to be isotropic, since the result of integration over
0',0" in Eq. (33) weakly depends on the type of distri-

bution over these variables because

n 2n
(FO') = [0 5in6 [do|F(0,0',0 —¢") Weakly depends on
0 0

0" [1].

Then, using Egs. (30)-(34), and performing integra-
tion over p, one is able to rewrite Eq. (29) in the form:
1 D\T
-2
" (4 (r)

Eq. (35) is the sought distribution function of in-
duced mean random field e. Since it depends only on
the absolute value of e, the distribution obtained is
spherically symmetric (isotropic).

From Eq. (35) one can see that the value D(T )
plays a role of characteristic width of distribution of in-
duced mean random field and is a measure of dipole in-
teraction in 2LS ensemble at a given temperature.

0,06 -

(35)

—P=10"K'm% 4 =1K
| \
---P=10"K'm%A_=10°K
0’00 L L L L L~ |
10° 100 10* 10° 107
T,K

Fig. 1. The plot of D(T) at d=10"°Q-m,
Jimin =100 K, Jpux =1K and PA,, =10 m™

max —

max

The plot of interaction strength D(T') at two different |

sets of values (I_’ 5 A max ), such as PA,, = const (which

corresponds to the constant volume density of 2LS, see
Eq. (6)), is given in Fig. 1:

From Fig. 1 one can see that the temperature of co-
operativity onset strongly depends on the value of W
potential asymmetry dispersion in the 2LS ensemble.
And the low-temperature saturation value of interaction
strength is mainly determined by the volume concentra-
tion of dipoles, being comparatively weakly sensitive to
the W potentials’ asymmetries.

From Eq. (35) it is possible to obtain the distribution
function of the mean random field projections e, on the

arbitrary chosen axis z:
1 D7)

fle.)=—

T iezz +D2(T)i. (36)

3. INTERACTION-MODIFIED DOS

Interaction in the 2LS ensemble should lead to the
change of its density of states (DOS) (4).

We shall calculate the 2LS DOS (4), modified by
the interaction in the mean random field approximation
using the MRF projection distribution function Eq. (36),
calculated in the previous section.

The normalized to unity one-particle DOS for
noninteracting 2LS (4) in the limit N — o can be
represented as:

P(}norm (AJ\) = PO1 (A’;‘)' (Amax '(kmax _7“min))71 =

AN2Y5(A-a )35 00— )
J k )

=l k=1
To account for the interaction, one should consider
the additional induced asymmetry of the double-well

potential d-e_, obeying the distribution function (36).

(37

Then, by analogy with (37), one obtains:

~ 0 N
Pluorm(A,%,T)= PN 72 Z [3(a-2g;~d-e) fles T ey Y8 (k2 )=
k=1

J=l-0
Amax
_ o [a-fmeoa,
P (Amax '(kmax _xmin ))_ _[ f f d[
Amax
P (nAmaX -(kmax kmm (arctan[ j arctan[

or, after transformation to Varlables

P

ﬁlngrm(U,J,T):

TAmax (A‘max -

The plot of 2LS DOS, given by Eq. (38), for two
different values of interaction strength d-D(T), is
shown in Fig. 2. Due to the “smearing” by the induced
random fields, the values of asymmetries of W poten-
tials allowed belong now to the interval (—oo;0). This

An: 2
ﬁ} J S (X iy —
_ kmax 77“min

U
. -| arctan
Amin) J\/UZ_JZ {

Amax =M

'max —"“min

Hmax = Pmin ;Xmin —xkjdxk = (39

2

A-A

2=t

d-D(T) d-D(T)

2 2 2 2
VU2 22 4 A Jt M. J )

|result can be qualitatively understood in the next way.

The distribution function of A ’s for noninteracting 2LS
is a step, which begins at A=0 andends at A=A, .

Including the interaction between 2LS leads to the
smearing of the step’s edges by the characteristic value
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d-D(T). This causes the emergence of non-zero DOS
at A<0 (it corresponds to the DOS of W potentials
which change their asymmetry sign due to interaction)
and at A>A,,, and within the range 0<A<A 0

DOS decreases due to the normalization condition
Eq. (6).

30 el
4 ~e
/" *
I A}
! )
5 2f ! '
<
%)
Q
a 1
1+ . | !
—HighT ) \
==-LowT /} \
’ 1
g \~~
Qbmsmm=er==" | | Tteaceao..
-1 0 1 2
A K

Fig. 2. Plot of 2LS DOS vs. A, Eq. (38), in the lim-
its of high (d-D(0)=0) and low (d-D(0)=0.057K)
temperature

From Eq. (39) one can see that the 2LS excitation
spectrum is practically insensitive to the interaction in
the MRF approach, provided that

A, —NU? =J* <<d -D(T). (40)

The condition given by Eq. (40) is satisfied (for the
standard value A, ~1K) for any thermal 2LS in the

temperature range 7 <100mK , where the discrepan-
cies with the standard 2LS model are found.

So, we conclude that the ultra-low-temperature de-
viations of some physical properties of glasses from
predictions of the standard 2LS model can not be ac-
counted for by including mutual dipole interaction, at
least in the static MRF approach.
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IJIOTHOCTH COCTOSAHUI B3AUMOJIENCTBYIOHINX ABYXYPOBHEBBIX CUCTEM
B AMOP®HBIX TBEPJbIX TEJAX B IIPUBJIN)KEHUU CJIYYAHHOI'O CPEJHETI'O ITOJIA

A.A. Bopucenko

Merox ciydaitHoro cpexHero nous [1, 2] 06o0men st ciaydaifHeIX (C OnpeneNIeHHol (yHKIUeH paclpeeneHus) BeIHInH
TYHHEBHBIX MaTPUUHBIX 3JIEMEHTOB U ACHMMETpPUil IBYXSIMHBIX IOTEHIIUAJIOB ¥ IPUMEHEH AJIsl yueTa AUTOIBHOTO B3aUMOIeH-
CTBHUSI MEXYy JIByXypOBHEBHIMH CHCTEMaMH B cTeknax. Haiinennas ¢yHKuus pacnpenenceHus CIydyalHOTO CPEIHEro IOJIsl hc-
MONTb30BaHa AJs pacueTa MOAM(UIMPOBAHHON B3aUMOJAEHCTBHEM IUIOTHOCTH COCTOSHHH aHCaMONsA ABYXYPOBHEBBIX CHUCTEM.
[Tpu ncionbp30BaHUM PEATUCTHYHBIX BEIMYHH (DEHOMEHOJIOTHIECKHX [TapaMeTPOB HalJeHHas! ITONPpaBKa K HU3KOIHEPTreTHIECKOH
IUIOTHOCTH COCTOSIHUM SIBJIETCS BECbMa MaJIOM.

IIJIBHICTB CTAHIB IBOPIBHEBUX CUCTEM, IO B3AEMOAIIOTh B AMOP®HUX TBEPJAUX
TINIAX B HABJIM’)KEHHI BUITAJIKOBOI'O CEPEJIHBOI'O ITIOJISAA

0.0. bopucenko

Merton BHIIAAKOBOTO cepeaHBOro Mo [1, 2] y3aranpHeHO A BUIAJKOBUX (3 MEBHOIO (DYHKIIEIO PO3MOIITY) BEIHYHH TY-
HEJIbHUX MAaTPUYHHUX EJIEMEHTIB Ta acUMETpil IBOSIMHMX IOTEHIialiB Ta 3aCTOCOBAHO JUIS BPAaXyBaHHs IHUIIOJIBHOI B3aEMOIl
MiX TBOPIBHEBUMH CHCTEMaMH B CTeKJIaX. 3Hai/IeHy (QYHKLIIO PO3MOALTY BUIIaAKOBOTO CEPEAHBOTO MO 3aCTOCOBAHO ISl PO3-
paxyHKy Moan(iKoBaHOI B3a€MOJIEIO LIIILHOCTI CTaHiB aHCaMOIIO JBOPIBHEBUX cucTeM. [Ipy BUKOPHCTaHHI peaiCTHYHUX Be-
TUYUH HEHOMEHOJIOTIYHHX ITapaMeTpiB 3HalIeHA MONPaBKa J0 HU3bKOCHEPTEeTUYHOI IIITBHOCTI CTaHIB € BEIbMHU MAJIOK0.
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