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1. INTRODUCTION 
To study quantum mechanical systems composed of 

indistinguishable entities, as most physical systems are, 
one finds that it is advisable to rewrite the ensemble 
theory in a language that is more natural to a quantum-
mechanical treatment, namely the language of the 
operators and the wave functions [1]. Once we set out to 
study these systems in detail, we encounter a stream of 
new and altogether different physical concepts. In par-
ticular, we find that the behavior of even a noninteract-
ing system, such as an ideal gas, departs considerably 
from the pattern set by the so-called classical treat-
ments. In the presence of interactions the pattern be-
comes still more complicated. 

Recently there have been notable studies on the for-
mulation and possible experimental consequences of 
extensions of the usual physical theories in the non-
commutative spaces (see for example [2-6]). The study 
on noncommutative spaces is much important for un-
derstanding phenomena at short distances beyond the 
present test of different physical theories. For a mani-
fold parameterized by the coordinates , the noncom-
mutative relations can be written as:  
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[ ] [ ] [ ] ,0,,, =δ=θ= jiijjiijji ppipxixx   (1) 

where  is an antisymmetric tensor which can be de-

fined as 

ijθ

kijkθε=
2
1

ijθ .  

In this paper we study the formulation of quantum 
statistics, namely the quantum-mechanical ensemble 
theory, the density matrix, etc., in a noncommutative 
space and the new features that arise. We consider for 
illustration some basic and important examples in the 
framework of noncommutative statistical mechanics: 
(i). An electron in a magnetic field. (ii). A free particle 
in a box. (iii). A linear harmonic oscillator. 

Contrary to the other fields of physics, statistical 
mechanics has not been studied extensively in non-
commutative spaces and this work can be a motivation 
for more studying this field of physics. 

2. PERTURBATION ASPECTS  
OF NONCOMMUTATIVE DYNAMICS 

NCQM is formulated in the same way as the stan-
dard quantum mechanics SQM (quantum mechanics in 

commutative spaces), that is in terms of the same dy-
namical variables represented by operators in a Hilbert 
space and a state vector that evolves according to the 
Schrödinger equation:  

,>ψ>=ψ ncH
dt
di   (2) 

we have taken in to account .  denotes 
the Hamiltonian for a given system in the noncommuta-
tive space. In the literatures two approaches have been 
considered for constructing the NCQM:  

1= θ≡ HHnc

a) , so that the only difference between SQM 
and NCQM is the presence of a nonzero θ  in the com-
mutator of the position operators, i.e. Eq.(1).  

HH =θ

b) By deriving the Hamiltonian from the Moyal analog 
of the standard Schrödinger equation:  
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∂
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θ   (3) 

where  is the same Hamiltonian as in the stan-
dard theory, and as we observe the  dependence enters 
now through the star product [7]. In [8], it has been 
shown that these two approaches lead to the same 
physical theory. Since the noncommutativity parameter, 
if it is non-zero, should be very small compared to the 
length scales of the system, one can always treat the 
noncommutativity effects as some perturbations of the 
commutative counterpart. For the Hamiltonian of the 
type:  
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the modified Hamiltonian  can be obtained by a 
shift in the argument of the potential [2-6,9]: 

θH

,
2
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, iijijii pppxx =+= θ   (5) 

which leads to 
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m

pH θ−+=θ    (6) 

The variables  and  now satisfy the same commu-
tation relations as the usual case:  

ix ip

[ ] [ ] [ ] .,,0,, ijjijiji pxppxx δ===   (7) 

Now we discuss the perturbation aspects of non-
commutative dynamics. Using 
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and Eq.(6) we have:  
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where jiji px θε−=∆
2
1  and )(
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Hamiltonian in ordinary(commutative) space. 
To the first order we have:  
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where:  
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To the first order in perturbation theory we have:  
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where  and 0
nE nφ  are the n-th eigenvalue and eigen-

function of the Hamiltonian .  and φ  are the n-
th eigenvalue and eigenfunction of . 

H nE
H

n

nc

3. THE DENSITY OPERATOR  
IN NONCOMMUTATIVE SPACES 

Using the orthonormal functions φ , an arbitrary 
wave function in a noncommutative space can be writ-
ten as:  

n

,)()( ∑=
n

n
k
n

k tat φψ   (17) Tr

where: :  

∫= .)()( * τψφ dtta k
n

k
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The time variation of these coefficients will be given 
by: 
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where . We now introduce the density 

operator 
mnnm HH φφ= ∫ *

)(tρ  in a noncommutative space by the matrix 
elements: :  
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Clearly the matrix element )(tnmρ  is the ensemble 

average of the quantity , which as a rule 
varies from member to member in the ensemble. 
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We shall now determine the equation of motion for 
the density matrix )(tnmρ : 
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It can be written in the following form: 
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Using the commutator notation, it can be written as:  

],[ ρ=ρ Hi .  (23) 
Now, we consider the expectation value of a physi-

cal quantity G in a noncommutative space which is dy-
namically represented by an operator G . This will natu-
rally be determined by the double averaging process: 
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where:  
τφφ= ∫ dGG mnnm

* .  (26) 

Introducing the density matrix ρ , it takes a particularly 
neat form:  

)()(
,

GTrGGG
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We note that if the original wave functions , were 

not normalized then the expectation value  would 
be given by the formula  

kψ

>G<

)(
)(

ρ
ρ

>=<
GTrG . (28) 

The interesting point is that the equations (23) and (28) 
are the same as the commutative case with quantities 
replaced by their noncommutative counterparts. 

4. STATISTICS OF THE VARIOUS 
ENSEMBLE 

The microcanonical ensemble. The construction of 
the microcanonical ensemble is based on the premise that 
the systems constituting the ensemble are characterized 
by a fixed number of particles , a fixed volume V  and 

an energy lying within the interval 

N
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,
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( ∆∆
− EE +  

where . The total number of distinct microstates 
accessible to a system is then denoted by the symbol 

 and by assumption, any of these micro-
states is just as likely to occur as any other. 

E<<∆

);, ∆EV,(Γ N
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Accordingly, the density matrix mnρ  (which in the 
energy representation must be a diagonal matrix) will be 

of the form 
Γ
1 , for each of the accessible states and 0, 

for all other states. 
We note that ρ  is independent of energy (energy ei-

genstates) and the volume V, so it does not depend on 
space coordinates. It means that the noncommutativity 
of space has no effects on ρ  in microcanonical ensem-
ble. 

The dynamics of the system determined by the ex-
pression for its entropy, which in turn is given by:  

,Γ= kLnS    (29) 
which as mentioned above remains unchanged in non-
commutative spaces. 

The canonical ensemble. In this ensemble the mac-
rostate of a member system is defined through the pa-
rameters N, V and T; the energy E now becomes a vari-
able quantity. The probability that a system, chosen at 
random from the ensemble, possesses an energy E, is 
determined by the Boltzmann factor exp( , where )Eβ−

kT
1

=β . The density matrix in the energy representa-

tion is therefore takes as:  
,mnnmn δρρ =   (30) 

where: :  

,...2,1,0; ==ρ β− nce nE
n    (31) 

Here  are the energy eigenvalues in noncommutative 
space (Eq.11), and the constant c is given by: 

nE
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−
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  (32) 

Where , is the partition function of the sys-
tem in the noncommutative space. The density operator 
in the canonical ensemble may be written as: 
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Then the expectation value of a physical quantity G,  in 
a noncommutative space is given by: :  
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EXAMPLES 
(i). An electron in a magnetic field. The Hamiltonian 

of the system has the following form: 

),.( BH B σµ−=   (35) 2
pH =

where 
mc
e

B 2
=µ . The Hamiltonian is space independ-

ent, so there is no corrections due to the noncommuta-
tivity of space on the statistical (thermodynamical) 
properties of this system. 

(ii). A free particle in a box.  Let us consider the 
motion of a particle with charge e and mass m in the 
presence of a magnetic field produced by a vector 
potential . The Lagrangian is as follows:  A

1 ),,(
2

2 yxVVA
c
emVL −⋅+=    (36) 

where  (no summation, i ) are the com-
ponents of the  velocity of the particle and  
are the scale factors. V  describes additional inter-
actions (impurities). For the case of a free particle 

. In the absence of the quantum spectrum the 
well-known Landau levels consists of V. In the strong 
magnetic field limit only the lowest Landau level is 
relevant. But the large B limit corresponds to small m, 
so setting the mass to zero effectively projects onto the 
lowest Landau level. In the chosen gauge  
and in that limit, the Lagrangian (36) takes the follow-
ing form:  

iii qhV =

0) =

3,2,1=
)3,2,1( =ihi
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,( yxV
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which is of the form , and suggests that ),( qpHqp −

11qBhc
e  and  are canonical conjugates, so we have

: 
22qh

,],[ 2211 eB
ciqhqh −=  (38) 

which can be written in general form:  
,],[ ijjjii iqhqh θ=  (39) 

which is the fundamental space-space noncommutativ-
ity relation in a general noncommuting curvilinear co-
ordinates. The Cartesian, circular cylindrical and spheri-
cal polar coordinates are three special cases. 

So a free particle in a noncommutative space is 
equal to a particle in commutative space but in the pres-
ence of a magnetic field. The Hamiltonian of a particle 
in a magnetic field is:  

2)(
2
1 A

c
qP

m
H −= .  (40) 

On the other hand let us introduce the noncommutativity 
to momentums instead of space coordinates:  

,],[],[0],[ ijjiijjiji ippipxxx θ=δ==  (41) 
one can easily show that there is a transformation:  
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2
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iijijii xxxpp =+= θ    (42) 

where the new variables  and  satisfy the standard 
commutation relations (7). We note that (42) is the same 

as 

ip ix

c
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q
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Now the Hamiltonian of a free particle in a non-
commutative space is: 
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where . Since for a free particle , 
so to the first order there is no corrections to the Hamil-
tonian and therefore there is no corrections due to non-
commutativity of space on the statistical (thermody-
namical) properties of the this system. 

jiijkk pxL =∈ 0=L

(iii). A harmonic oscillator. The case of a linear 
harmonic oscillator is irrelevant, because there is only 
one space variable. In the case of harmonic oscillator in 
higher dimensions, for instance spherical harmonic os-
cillator, the corrections on the Hamiltonian due to non-
commutativity of space is given by:  
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∂
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where: :  
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We put  and the rest of the  components to 
zero, which can be done by a rotation or by a redifini-
tion of coordinates. So we have:  
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For a spherical harmonic oscillator the unperturbed 
(commutative) eigenfunctions are given by:  
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where )( 22
1

rLn α+  are Lagure's function. Using 
Eqs.(14) and (31), one can easily derive the energy ei-
genvalues in noncommutative space and so the density 
operator ρ  and the partition function 

. The thermodynamical properties of 

the system can be done straightforwardly using partition 
function. We have: 

∑ β−

n

Ene=βnQ )(

θ>=ϕϕ=< mHE nemInemn 4
1||)1( . 

So: 

)(4)( β
θ

β
−

=β N
m

N QeQ . 
The Helmholtz free energy is given by: 

AmkA +θ
β+

=
4

. 

Whence we obtain: 

Smk
T
AS +θ

β
=

∂
∂

−=
4

, 

UmkU +θ
β+

=
2

, 

CmkC +θ
β

=
2

, 

where  and C  are the entropy, the internal energy 
and the specific heat of the system in Noncommutative 
space and S, U and C are their counter part in commuta-
tive case. 
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К СТАТИСТИЧЕСКОЙ МЕХАНИКЕ В НЕКОММУТАТИВНЫХ ПРОСТРАНСТВАХ 

С.А. Алави 

Изучается формулировка квантовой статистической механики в некоммутативных пространствах. Стро-
ится теория микроканонического и канонического ансамблей в некоммутативных пространствах и изучают-
ся некоторые основные и важные примеры в рамках некоммутативной статистической механики. 

 
 

ДО СТАТИСТИЧНОЇ МЕХАНІКИ В НЕКОМУТАТИВНИХ ПРОСТОРАХ 

С.А. Алаві 

Вивчається формулювання квантової статистичної механіки в некомутативних просторах. Будується тео-
рія мікроканонічного й канонічного ансамблів у некомутативних просторах і вивчаються деякі основні й 
важливі приклади в рамках некомутативної статистичної механіки. 
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