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We present a theoretical study of non-hydrodynamic propagating processes, which correspond to heat waves in 

liquids. It is shown, that heat waves can propagate in liquids only on a finite spatial scale and do not appear in the 
long-wavelength region. An expression for a propagation gap for heat waves is derived within a five-variable gen-
eralized hydrodynamic treatment. Molecular dynamics simulations were performed for four thermodynamic states 
of a one-component Lennard-Jones fluid in order to estimate dependence of the propagation gap on temperature. 
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1. INTRODUCTION  
Collective dynamics in media with topological dis-

order, and liquids in particular, is one of challenging 
and not yet solved problems of modern statistical phys-
ics. Analytical solutions for collective dynamics can be 
obtained only in some limits. For the case of small 
wavenumbers  and frequencies ω , when the descrip-
tion of dynamics is limited by solely most slow proc-
esses on large spatial scales, the problem reduces to 
solving of a system of hydrodynamic equations with 
dynamical variables, which describe fluctuations of 
conserved quantities. For the case of pure single-
component liquids such a hydrodynamic problem was 
considered by Landau and Placzek [1] more than 70 
years ago, however correct analytical expressions for 
dynamical structure factor, as well as for a set of hydro-
dynamic time correlation functions within the precision 
of first three sum rules were obtained only in the 70-th 
[2]. The analytical expression for dynamical structure 
factor of single-component fluids  within the 
hydrodynamic approach is represented as a sum of three 
contributions: central Rayleigh peak comes from the 
relaxation process of thermal diffusivity, and two side 
Brillouin peaks, centered at the frequencies ±ω , 
which reflect propagating in opposite directions acous-
tic excitations with wavenumber  and frequencyω . 
Although hydrodynamic approach treats the fluids as a 
continuum, it and its empiric generalized version, 
known as damped harmonic oscillator (DHO), are fre-
quently used for analysis of experimental data on light, 
neutron or X-ray scattering in fluids [3]. In fact this 
leads to a postulate, that beyond the hydrodynamic re-
gion exist only one type of collective excitations and 
just a single relaxation process. Within the DHO analy-
sis of experimental data the wavenumber dependence of 
excitation frequency, damping coefficient and lifetime 
of relaxation process are treated as fitting parameters 
that cannot shed light on the origin of the relaxation 
process beyond the hydrodynamic region as well as 
correct mechanisms of damping of collective excita-
tions.  
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Essential advance in methods of computer simula-
tions of liquid dynamics during the last decade has de-

fined a new direction in theoretical studies of collective 
processes in liquids: calculation of various time correla-
tion functions in a wide region of wavenumbers and 
their analysis by generalized hydrodynamic theory. 
Theoretical approaches within the generalized hydrody-
namics are focused on solving the generalized Langevin 
equation (GLE), which is a master equation for time 
correlation functions [4]. A consistent treatment of slow 
and short-time fluctuations in the system permits to rep-
resent the GLE in a matrix form, which can be subse-
quently solved in terms of eigenmodes existing in the 
studied fluid on different spatial and time scales. Such 
an approach to solving the GLE is known as an ap-
proach of generalized collective modes (GCM) [5, 6]. 
In this paper we will use the GCM approach for a study 
of non-hydrodynamic collective excitations of thermal 
origin, which are the heat waves in liquids. These exci-
tations cannot exist on large spatial scales, because in 
comparison with hydrodynamic sound excitations there 
is so called propagation gap in long-wavelength region 
[7]. Such a type of excitations with finite lifetime in the 
hydrodynamic limit belongs to kinetic collective excita-
tions. Here we will study how the coupling to viscous 
processes affects the propagation gap within the five-
variable approach of GCM, as well as analyze the mo-
lecular dynamics (MD) results in order to estimate tem-
perature dependence of the propagation gap for heat 
waves.  

The remaining paper is organized as follows: in the 
next Section we will discuss the first results for heat waves 
obtained within the GCM approach. Section 3 contains 
details of molecular dynamics simulations performed for 
several thermodynamic points of Lennard-Jones fluid and 
as well as results of the five-variable GCM analysis of 
non-hydrodynamic processes in these fluids. Conclusions 
of this study are collected in Section 4.  

 

2. APPROACH OF GENERALIZED 
COLLECTIVE MODES 

The GCM approach consists in solving of GLE in 
terms of dynamical eigenmodes, which contribute in 
different way to dynamics of fluids on different spatial 
and time scales. Using a chosen basis set of N dynami-
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cal variables one obtains a generalized (NxN) hydrody-
namic matrix  

( ) 1( , 0) ( , 0)NT F k t F k z−= = = ,

,

 (1) 

where  is a (NxN) matrix of time correlation 

functions between basis variables, and  is a 
(NxN) matrix of their Laplace transforms. Complex-
conjugated pairs of eigenvalues of the generalized hy-
drodynamic matrix correspond to propagating excita-
tions in the system, while purely real eigevalues reflect 
the relaxation processes.  
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A simple separated treatment of slow and short-time 
thermal processes was performed within a two-variable 
dynamical model [7] with the basis set of dynamical 
variables 

(2 ) { ( ) ( )}h h k t h k t= , , ,A  (2) 

which are the hydrodynamic variable of heat density 
and its first time derivative. Hydrodynamic variable and 
its first time derivative are orthogonal variables, i.e. 
they describe processes of different time scale. The ei-
genmodes of the dynamical model (2) were obtained as 
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and , , and  are generalized 
k-dependent specific heat at constant volume, thermal 
rigidity modulus and thermal conductivity, respectively. 
The eigenmodes (3) become a pair of complex-
conjugated eigenvalues 
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where  is a damping of thermal propagating exci-
tations and  denotes the dispersion law, for 
wavenumbers larger than some boundary value 
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which gives in fact a width of propagating gap for heat 
waves. However, the two-variable model (2) does not 
take into account coupling to density fluctuations, and 
therefore must be improved. Our task is to obtain an 
expression for propagation gap of heat waves within a 
more general five-variable dynamical model and ana-
lyze it temperature dependence using molecular dynam-
ics computer simulations.  

 
3. RESULTS AND DISCUSSION 

We have performed molecular dynamics simulations 
for four thermodynamic points of Lennard-Jones fluid 
with constant density n*=0.845 shown in Fig. 1.  

 
Fig. 1.  Four thermodynamic points (symbols) on 

the phase diagram of Lennard-Jones fluid used in this 
study of generalized collective eigenmodes 

All the static and time correlation functions needed 
for construction of generalized hydrodynamic matrices 
were calculated directly in MD simulations via statisti-
cal averages. The theoretical GCM analysis of MD data 
was performed within a generalized five-variable dy-
namical model with the following basis set [8] 
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One can analytically solve the five-variable dynamical 
model in long-wavelength region within the precision of 

. Among the five eigenvalues the lowest three ones 
exactly correspond to regular hydrodynamic modes: a 
relaxing mode of thermal diffusivity and a pair of 
acoustic propagating modes 

1 T s

TD Γ sc

 (8) 

where ,  and are thermal diffusivity, sound 
attenuation coefficient and adiabatic speed of sound. 
Two additional non-hydrodynamic modes are purely 
real and correspond to kinetic relaxing processes. One 
of these two kinetic relaxing modes, namely,  

2 2 L , (9) 

reflects processes connected with structural relaxation, 
while another kinetic relaxing mode  

3 3 T , (10) 

is of thermal origin. In Eqs. (9) and (10) the following 
shortcuts were introduced 
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γ Tκwhere , ,  and  are kinematic viscosity, 
high-frequency speed of sound, ratio of specific heats 
and isothermal compressibility. In Fig. 2 we show how 
the analytical solutions in long-wavelength limit corre-
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spond to numerical eigenmodes obtained in the whole 
region of wavenumbers.  

 
Fig. 2.  Generalized modes for T*=1.71, obtained 

within the five-variable generalized hydrodynamic  
treatment of  collective dynamics. Upper frame – imagi-
nary parts (dispersion) of generalized acoustic excita-
tions (shown by open circles connected by solid line) 
and heat waves (closed circles with solid line); lower 
frame – real parts (damping) of collective excitations 
shown by line-connected symbols and inversed lifetimes 
of relaxation processes di(k). Dashed lines are the ana-
lytical results for corresponding modes 

First feature is a good agreement between analytical 
and numerical results on hydrodynamic modes, for 
which linear asymptote in dispersion law and quadratic 
in wavenumbers dependence of damping is observed. 
Second, the cross-point of two analytical results for 
relaxing modes of thermal origin and  is 
quite close to the propagation gap boundary that permits 
us to use such a condition for the theoretical estimation 
of the propagation gap. Hence, within the five-variable 
dynamical model the width of the propagation gap for 
heat waves reads: 
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In case of decoupled heat and viscous fluctuations one 
would obtain an expression similar to the one obtained 
within the two-variable dynamical model of heat fluc-
tuations. One can predict, that since the coupling be-
tween thermal and viscous processes shifts the thermal 
kinetic mode to the higher lifetimes, corresponding to 
smaller , there should be a tendency to reduction of 
the propagation gap for heat waves because of such 
coupling. Since the ratio of specific heats and other 

thermodynamic quantities depend on temperature (and 
viscosity) in a non-trivial way we have studied numeri-
cally the dependence of the propagation gap for heat 
waves within the generalized five-variable dynamical 
model. These results are shown in Fig. 3 and one can 
make a conclusion, that by approaching the melting 
point (shown by a solid vertical line in Fig. 3) the 
propagation gap of heat waves essentially reduces, that 
makes the dispersion law of heat waves in liquids look-
ing like the zero-sound dispersion suggested in Ref. [9] 
for the case of liquid cesium and rubidium. 

0
3d

 
Fig. 3.  Dependence of the propagation gap width 

(symbols with errorbars) for heat waves on temperature 
for four studied thermodynamic points of Lennard-
Jones fluids. Solid vertical line corresponds to the melt-
ing temperature at fixed density 

4. CONCLUSIONS 
We have studied an effect of viscosity on heat 

waves dispersion in Lennard-Jones fluids within a five-
variable treatment of the approach of generalized col-
lective modes. Our results point out that higher viscos-
ity and coupling between thermal and viscous processes 
favor more long-wavelength heat waves in fluids. It was 
shown from analysis of MD simulations and subsequent 
GCM analysis, that the propagation gap for heat waves 
increases versus temperature.  
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КИНЕТИЧЕСКИЕ КОЛЛЕКТИВНЫЕ ВОЗБУЖДЕНИЯ В ЖИДКОСТЯХ:  
ТЕПЛОВЫЕ ВОЛНЫ 

Т.M. Брык, И.M. Мрыглод 

Представлено теоретическое исследование негидродинамических пропагаторных процессов, которые 
соответствуют тепловым волнам в жидкостях. Показано, что тепловые волны могут раcпространяться в 
жидкостях только на конечных пространственных масштабах и исчезают в длинноволновой области. В рам-
ках пятипеременного подхода обобщенной гидродинамики получено выражение для пропагаторной щели 
для тепловых волн. С целью определения зависимости пропагаторной щели от температуры выполнено 
компьютерное моделирование методом молекулярной динамики для четырех термодинамических состоя-
ний однокомпонентной Ленард-Джонсовской жидкости.  

 
 

КІНЕТИЧНІ КОЛЕКТИВНІ ЗБУДЖЕННЯ В РІДИНАХ: ТЕПЛОВІ ХВИЛІ 

Т.M. Брик, І.M. Мриглод 

Представлено теоретичне дослідження негідродинамічних пропагаторних процесів, що відповідають те-
пловим хвилям у рідинах. Показано, що теплові хвилі можуть поширюватись у рідинах лише на скінчених 
просторових масштабах і зникають у довгохвильовій області. В рамках п’ятизмінного підходу узагальненої 
гідродинаміки отримано вираз для пропагаторної щілини для теплових хвиль. З метою визначення залежно-
сті пропагаторної щілини від температури виконано комп’ютерне моделювання методом молекулярної ди-
наміки для чотирьох термодинамічних станів однокомпонентної Ленард-Джонсівської рідини. 
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