KINETIC COLLECTIVE EXCITATIONS IN LIQUIDS: HEAT WAVES
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We present a theoretical study of non-hydrodynamic propagating processes, which correspond to heat waves in
liquids. It is shown, that heat waves can propagate in liquids only on a finite spatial scale and do not appear in the
long-wavelength region. An expression for a propagation gap for heat waves is derived within a five-variable gen-
eralized hydrodynamic treatment. Molecular dynamics simulations were performed for four thermodynamic states
of a one-component Lennard-Jones fluid in order to estimate dependence of the propagation gap on temperature.
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1. INTRODUCTION

Collective dynamics in media with topological dis-
order, and liquids in particular, is one of challenging
and not yet solved problems of modern statistical phys-
ics. Analytical solutions for collective dynamics can be
obtained only in some limits. For the case of small
wavenumbers &k and frequencies ®, when the descrip-
tion of dynamics is limited by solely most slow proc-
esses on large spatial scales, the problem reduces to
solving of a system of hydrodynamic equations with
dynamical variables, which describe fluctuations of
conserved quantities. For the case of pure single-
component liquids such a hydrodynamic problem was
considered by Landau and Placzek [1] more than 70
years ago, however correct analytical expressions for
dynamical structure factor, as well as for a set of hydro-
dynamic time correlation functions within the precision
of first three sum rules were obtained only in the 70-th
[2]. The analytical expression for dynamical structure
factor of single-component fluids S(k,®) within the

hydrodynamic approach is represented as a sum of three
contributions: central Rayleigh peak comes from the
relaxation process of thermal diffusivity, and two side
Brillouin peaks, centered at the frequencies tw,(k),

which reflect propagating in opposite directions acous-
tic excitations with wavenumber k& and frequency o, .

Although hydrodynamic approach treats the fluids as a
continuum, it and its empiric generalized version,
known as damped harmonic oscillator (DHO), are fre-
quently used for analysis of experimental data on light,
neutron or X-ray scattering in fluids [3]. In fact this
leads to a postulate, that beyond the hydrodynamic re-
gion exist only one type of collective excitations and
just a single relaxation process. Within the DHO analy-
sis of experimental data the wavenumber dependence of
excitation frequency, damping coefficient and lifetime
of relaxation process are treated as fitting parameters
that cannot shed light on the origin of the relaxation
process beyond the hydrodynamic region as well as
correct mechanisms of damping of collective excita-
tions.

Essential advance in methods of computer simula-
tions of liquid dynamics during the last decade has de-
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fined a new direction in theoretical studies of collective
processes in liquids: calculation of various time correla-
tion functions in a wide region of wavenumbers and
their analysis by generalized hydrodynamic theory.
Theoretical approaches within the generalized hydrody-
namics are focused on solving the generalized Langevin
equation (GLE), which is a master equation for time
correlation functions [4]. A consistent treatment of slow
and short-time fluctuations in the system permits to rep-
resent the GLE in a matrix form, which can be subse-
quently solved in terms of eigenmodes existing in the
studied fluid on different spatial and time scales. Such
an approach to solving the GLE is known as an ap-
proach of generalized collective modes (GCM) [5, 6].
In this paper we will use the GCM approach for a study
of non-hydrodynamic collective excitations of thermal
origin, which are the heat waves in liquids. These exci-
tations cannot exist on large spatial scales, because in
comparison with hydrodynamic sound excitations there
is so called propagation gap in long-wavelength region
[7]. Such a type of excitations with finite lifetime in the
hydrodynamic limit belongs to kinetic collective excita-
tions. Here we will study how the coupling to viscous
processes affects the propagation gap within the five-
variable approach of GCM, as well as analyze the mo-
lecular dynamics (MD) results in order to estimate tem-
perature dependence of the propagation gap for heat
waves.

The remaining paper is organized as follows: in the
next Section we will discuss the first results for heat waves
obtained within the GCM approach. Section 3 contains
details of molecular dynamics simulations performed for
several thermodynamic points of Lennard-Jones fluid and
as well as results of the five-variable GCM analysis of
non-hydrodynamic processes in these fluids. Conclusions
of this study are collected in Section 4.

2. APPROACH OF GENERALIZED
COLLECTIVE MODES
The GCM approach consists in solving of GLE in
terms of dynamical eigenmodes, which contribute in

different way to dynamics of fluids on different spatial
and time scales. Using a chosen basis set of N dynami-
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cal variables one obtains a generalized (NxN) hydrody-
namic matrix

T™ = F(k,t =0)F ' (k,z =0), (1)

where F(k,t) is a (NxN) matrix of time correlation

functions between basis variables, and F(k,z) is a

(NxN) matrix of their Laplace transforms. Complex-
conjugated pairs of eigenvalues of the generalized hy-
drodynamic matrix correspond to propagating excita-
tions in the system, while purely real eigevalues reflect
the relaxation processes.

A simple separated treatment of slow and short-time
thermal processes was performed within a two-variable
dynamical model [7] with the basis set of dynamical
variables

A = (h(k, 1), h(k, 1)}, 2)

which are the hydrodynamic variable of heat density
and its first time derivative. Hydrodynamic variable and
its first time derivative are orthogonal variables, i.e.
they describe processes of different time scale. The ei-
genmodes of the dynamical model (2) were obtained as

% (k) = 0,(k) £ {c *) _M} , )
where
_ ¢ (HG" (k)
Gh(k)——zmuk) ; “4)
and ¢, (k), G"(k), and M\(k) are generalized

k-dependent specific heat at constant volume, thermal
rigidity modulus and thermal conductivity, respectively.
The eigenmodes (3) become a pair of complex-
conjugated eigenvalues

zi (k) =0, (k) iw, (k). 5)

where o, (k) is a damping of thermal propagating exci-
tations and ®, (k) denotes the dispersion law, for

wavenumbers larger than some boundary value

h
kf) =Gy G_’ (6)
20\ p

which gives in fact a width of propagating gap for heat
waves. However, the two-variable model (2) does not
take into account coupling to density fluctuations, and
therefore must be improved. Our task is to obtain an
expression for propagation gap of heat waves within a
more general five-variable dynamical model and ana-
lyze it temperature dependence using molecular dynam-
ics computer simulations.

3. RESULTS AND DISCUSSION

We have performed molecular dynamics simulations
for four thermodynamic points of Lennard-Jones fluid
with constant density #n¥=0.845 shown in Fig. 1.
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Fig. 1. Four thermodynamic points (symbols) on

the phase diagram of Lennard-Jones fluid used in this
study of generalized collective eigenmodes

All the static and time correlation functions needed
for construction of generalized hydrodynamic matrices
were calculated directly in MD simulations via statisti-
cal averages. The theoretical GCM analysis of MD data
was performed within a generalized five-variable dy-
namical model with the following basis set [8]

AP (k) = {nlk,0),0 " (k,0), (k0. e, ), k1)

_ 1 & (N

A (k,t)y =—=>" 4/ ()" .
N o

One can analytically solve the five-variable dynamical
model in long-wavelength region within the precision of
k*. Among the five eigenvalues the lowest three ones
exactly correspond to regular hydrodynamic modes: a
relaxing mode of thermal diffusivity and a pair of
acoustic propagating modes

d(ky=D,k>,  z*(k)=Tk>+ick, (8)

where D,, I' and c, are thermal diffusivity, sound
attenuation coefficient and adiabatic speed of sound.
Two additional non-hydrodynamic modes are purely
real and correspond to kinetic relaxing processes. One
of these two kinetic relaxing modes, namely,

dy(k)=dy =D, k* +(y—=DAK" , )

reflects processes connected with structural relaxation,

while another kinetic relaxing mode
d, (k) = d =yD,k* = (y=DAK* (10)

is of thermal origin. In Egs. (9) and (10) the following
shortcuts were introduced

2 2 _
= g =S -1, (n
D, m\ r
and
dld] D
- (D, -D,) (12)

dy~d; Dyc

where D,, c,, vy and k, are kinematic viscosity,

high-frequency speed of sound, ratio of specific heats
and isothermal compressibility. In Fig. 2 we show how
the analytical solutions in long-wavelength limit corre-



spond to numerical eigenmodes obtained in the whole
region of wavenumbers.
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Fig. 2. Generalized modes for T*=1.71, obtained
within the five-variable generalized hydrodynamic
treatment of collective dynamics. Upper frame — imagi-
nary parts (dispersion) of generalized acoustic excita-
tions (shown by open circles connected by solid line)
and heat waves (closed circles with solid line); lower
frame — real parts (damping) of collective excitations
shown by line-connected symbols and inversed lifetimes
of relaxation processes di(k). Dashed lines are the ana-
Iytical results for corresponding modes

First feature is a good agreement between analytical
and numerical results on hydrodynamic modes, for
which linear asymptote in dispersion law and quadratic
in wavenumbers dependence of damping is observed.
Second, the cross-point of two analytical results for
relaxing modes of thermal origin d,(k)and d,(k) is

quite close to the propagation gap boundary that permits
us to use such a condition for the theoretical estimation
of the propagation gap. Hence, within the five-variable
dynamical model the width of the propagation gap for
heat waves reads:

dO
© - \/ 3 . (13)
(y+DD; +(y=DA
In case of decoupled heat and viscous fluctuations one
would obtain an expression similar to the one obtained
within the two-variable dynamical model of heat fluc-
tuations. One can predict, that since the coupling be-
tween thermal and viscous processes shifts the thermal
kinetic mode to the higher lifetimes, corresponding to
smaller d), there should be a tendency to reduction of

the propagation gap for heat waves because of such
coupling. Since the ratio of specific heats and other

thermodynamic quantities depend on temperature (and
viscosity) in a non-trivial way we have studied numeri-
cally the dependence of the propagation gap for heat
waves within the generalized five-variable dynamical
model. These results are shown in Fig. 3 and one can
make a conclusion, that by approaching the melting
point (shown by a solid vertical line in Fig. 3) the
propagation gap of heat waves essentially reduces, that
makes the dispersion law of heat waves in liquids look-
ing like the zero-sound dispersion suggested in Ref. [9]
for the case of liquid cesium and rubidium.
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Fig. 3. Dependence of the propagation gap width
(symbols with errorbars) for heat waves on temperature
for four studied thermodynamic points of Lennard-
Jones fluids. Solid vertical line corresponds to the melt-
ing temperature at fixed density

4. CONCLUSIONS

We have studied an effect of viscosity on heat
waves dispersion in Lennard-Jones fluids within a five-
variable treatment of the approach of generalized col-
lective modes. Our results point out that higher viscos-
ity and coupling between thermal and viscous processes
favor more long-wavelength heat waves in fluids. It was
shown from analysis of MD simulations and subsequent
GCM analysis, that the propagation gap for heat waves
increases versus temperature.
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KHHETHYECKHUE KOJUIEKTUBHBIE BO3BYKJIEHUSA B ’KUJKOCTSIX:
TEIIJIOBBIE BOJIHbI

T.M. bpuk, U.M. Mpuienoo

[IpencTaBneHO TeOpEeTHUECKOE HCCIENOBaHUE HETHAPOJAWHAMHYECKHX IPOMAraTOPHBIX IIPOILECCOB, KOTOPHIC
COOTBETCTBYIOT TEIUIOBBLIM BOJHAM B KHUAKOCTAX. [loka3zaHO, YTO TEIMJIOBBIE BOJIHBI MOTYT PacHpOCTPaHATHCA B
KHUJKOCTSIX TOJIHKO Ha KOHEYHBIX MPOCTPAHCTBEHHBIX MACIITa0ax M MCUYE3al0T B JUIMHHOBOJIHOBOW 00nacTu. B pam-
Kax MATHIIEPEMEHHOTO MOAX0Ja 0000IMEeHHON THIPOAMHAMIKH TOJTYYCHO BBIPKEHHE IUIS IPOIATaTOPHON IIeIH
JUTA TETUTOBBIX BONH. C IENBI0 OMpEAeTCHUs] 3aBUCHUMOCTH TPOIMAraTOpHON INENH OT TEeMIEpaTyphbl BBIIIOIHEHO
KOMITBIOTEPHOE MOJICIUPOBAHUE METOJOM MOJIEKYJISAPHOW AMHAMUKH JUIS YETHIPEX TEPMOJMHAMUYECKHX COCTOS-
HUN OTHOKOMIIOHEHTHOM JleHapa-/»KOHCOBCKOM KUJIKOCTH.

KIHETHYHI KOJIEKTUBHI 35Y1?)KEHHS B PIIUHAX: TEIIJIOBI XBWJII
T.M. Bpux, 1. M. Mpuznoo

[TpeacTaBneHo TEOPETUYHE JOCIIKEHHS HET1IPOANHAMIYHUX MPONAaraTOPHUX MPOLECIB, IO BiJNOBIIAIOTH Te-
TUTOBMM XBWJISIM y pianHax. ITokazaHo, 10 TETJIOBI XBHJII MOXYTh ITOIIUPIOBATHCH y PiAMHAX JIMIIE HAa CKIHYEHUX
MIPOCTOPOBUX MacmITabax i 3HUKAIOTh y TOBrOXBWIIBOBIH 001acTi. B paMkax m’TH3MIHHOTO MiAXOIy y3araabHEHOT
TipOAMHAMIKM OTPUMAHO BHpPa3 ISl IPONAraTopHOl IIIIMHK IS TEIUIOBUX XBHJIb. 3 METOIO BU3HAUCHHS 3aJI€XKHO-
CTi IpOIAraTOpHOi IIUIMHK BiJI TEMIEpaTypy BUKOHAHO KOMIT IOTEPHE MOJIEJIIOBAHHSI METOJIOM MOJIEKYJISIpHOI -
HaMiKH JJIs1 YOTUPhOX TEPMOJIMHAMIYHUX CTaHIB OJTHOKOMITOHEHTHOI JIeHapa-/[>kOHCIBCBHKOT piinHH.
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