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We consider spatially inhomogeneous states of particles, weakly interacting with hydrodynamic medium involv-
ing Bogolubov’s reduced description method. It has been shown that such a system has both kinetic and hydrody-
namic stages of evolution. The coupled system of equations of motion for this evolution stage is obtained. The tran-
sition from kinetic to hydrodynamic stage of evolution for particles interacting with medium has been also studied.
Consequently we obtained a system of equations, which completely describes the evolution of the system on hydro-
dynamic stage. These equations can describe such systems as neutrons propagating in hydrodynamic medium with-

out multiplication and capture.
PACS: 05.20.Dd, 28.20Gd

1. INTRODUCTION

The reduced description method is the most consis-
tent microscopic approach in modern Kkinetics. Basic
concepts of this method, used for description of classi-
cal systems are stated in the book [1] by
N.N. Bogolubov. The extension of this method to quan-
tum many-particle systems is given in the book [2].

The application of reduced description method for a
one-component system gives us a microscopic ap-
proach, which allows us to obtain kinetic equations
(when the system is described by one-particle distribu-
tion function) and hydrodynamic equations (in case
when the system is described with a set of hydrody-
namic parameters such as temperature, density and ve-
locity).

However some systems may include different sub-
systems on different stages of evolution. For example,
in a two-component system one component can be at
the kinetic evolution stage, which means that it is de-
scribed by a one-particle distribution function, while the
other component evolutes hydrodynamicaly. Such a
situation occurs when the system consists of strongly
interacting particles of one type (hydrodynamic me-
dium) and particles of the other type, which weakly
interact with the medium, but do not interact with each
other owing to their small number. One of specific ex-
amples of such systems are slow neutrons in a hydrody-
namic medium.

The microscopic theory, describing spatially homo-
geneous evolution of particles, in hydrodynamic me-
dium by means of the reduced description method has
been developed in [2]. In our work we consider spa-
tially inhomogeneous states of particles weakly interact-
ing with a hydrodynamic medium by using the reduced
description method.

2. REDUCED DESCRIPTION METHOD
CONCEPTS

At arbitrary time ¢, our system can be described
with a statistical operator p (¢), which evolves accord-

ing to Liouville equation
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where 9 is the system's Hamiltonian. For the closed
systems, the solution of this equation can be written as

p (t) — e*ij{tpeim , (2)
where p, is the statistical operator of initial state.

Operator p (t) satisfies two fundamental principles

according to the reduced description method's concepts:
The principle of weakening of spatial correlations
represents a simplification of traces of statistical opera-

tor p(t) and the products of quasi-local operators

a(x) and b(y) when their arguments are separated

Spp(t)a(x)b(y) — Spp(t)a(x)-Spp(1)b(y).(3)
[x-yp>r;
Here r, is the correlation radius of state p(t).

The ergodic relation describes asymptotic form of
the statistical operator (and, certainly, traces with this
operator) at large time:

p(t)=e"pe”™ > w. 4)

—0

Here w is the equilibrium Gibbs operator. Actually,
the relation (4) represents the fact that the system trans-
forms in a state of statistical equilibrium at large time
scales, described with Gibbs statistical operator w .

According to Bogolubov's concept of relaxation
time hierarchy, as system evolves towards equilibrium,
the set of description parameters becomes more and
more simple. Moreover, as the system approaches the
equilibrium, the number of parameters, required for
description of the system, decreases, and the system's
description simplifies. A set of parameters, which de-

scribes the system on one evolution stage, is called the
set of reduced description parameters of the system.
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3. HAMILTONIAN AND DESCRIPTION
PARAMETERS

The system considered in our work consists of two
sybsystems — medium and particles interacting with the
medium. These system’s Hamiltonian % can be written
as

H=H,+V, H,=H,+H,. (5)

Here 71, describes the non-interacting subsystems,

and operator ¥ describes the interaction of subsystems.
We suppose the particle density to be small, so we can
neglect the interaction among them. Therefore, the op-
erator # ,, which describes the particle subsystem by

its own, has a structure of a free particle Hamiltonian.
Though, we assume that Hamiltonian %, , which de-
scribes the medium subsystem, contains a strong inter-
action of medium particles with each other. This leads
to a fast relaxation of this subsystem to local equilib-
rium state. Also the interaction of subsystems is weaker
than that of medium particles with each other. So the
relaxation time for medium subsystem is substantially
lower than that for the both subsystems t,, determined
by the inter-subsystem interaction. So we see, that the
relaxation time of the whole system is determined by
the weaker interaction V . According to the basic con-
cepts of the reduced description method, we accept that
at times ¢>1, the additive motion integral's densities

can be taken as reduced description parameters. This
means that the statistical operator p(¢), which de-

scribes the systems on evolution stage when time is
greater than specific relaxation time t,, has functional

dependence on the additive integrals densities ¢ , (x).

Hydrodynamic medium has five additive motion in-
tegrals relatively to Hamiltonian #,: these are mass,

energy and momentum (for details, see [2]). So the hy-
drodynamic medium will be described in terms of five

variables , (x), o =0,i,4, where {,(x)=¢(x) is
the medium energy density, {,(x)=n,(x) is the me-
p('")(x) is the me-

dium mass density. For each variable an operator

dium momentum density, ¢, (x)=

. (x), a=1i,4 can be introduced. These operators
can be expressed in terms of creation ¢ *(x) and anni-

hilation ¢ (x) operators of medium particles:

éo (x)=é(x)= qu)+ (x)Vo(x)
" (6)
)o" (x+R)o’ (x)o (x)o (x+R),

g (x)=7 <x>—2[a“’ (")(p(x) ¢ (x )a“’(")} (7

ox, 0.
i (x)=p" () =m,0" (x)o (x). ®)
Here m,,

is the medium particle mass. Medium mo-

L
+Ejd’RVm (R

tion integrals operators can be expressed as following:
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M =J.d3x;3(m)(x),13i :J.d3xrfl. (x), 7, =Id3xé(x). ©)

As mentioned before, 7, has a structure of free

particles Hamiltonian:

A, :Lj‘a”xV\p” (x) Vi (x). (10)
2m

Here *(x) and  (x) are correspondingly creation

and annihilation operators of particles, and m is the
particle mass. As a description parameter for particles
we choose the Wigners distribution function [2,3]

(x jd3 P ”(x—%)qﬁ(x+%),

which is a density of motion integral for free particles.

(1)

We introduce a generalizing symbol &, (x) for de-
scription parameters,
A={a,p}:

CAA (X)|A:a :é\a (X)’ CA(X)|A:p :j}p (X) (12)

We note, that medium and particles creation and annihi-
lation operators commute:
)-6 (x)]=0,

[V (x).6" (x)]=0. [ (x
[V (x).6" ()] =0 [ (x).6 (x)]=0.

Time derivative of additive motion integrals densi-
ties can be expressed in terms of additive motion inte-
grals flows [2], [4]:

where “A” possesses values

(13)

aQAAk (X) _

£, (x)=il,,C , (x)]=- x (14)

Flow operators CA m (x) can be expressed in terms of

description parameters CA 4 (x) with rather complicated
integral expressions (see more in [2]), but expression
for QApk (x) is very simple:

G = (0) =25, (). (1)
4. MOTION EQUATION

Using the concepts of Bogolubov’s reduced descrip-
tion method we can obtain motion equations for re-
duced description parameters. As mentioned, the statis-

tical operator p(¢), on evolution stage when time is
greater than specific relaxation time t,, has functional

dependence on description parameters &, (x):
p(r)=e"

and operator p (t) on the initial state (statistical opera-

"oel —)c(C (x’,t;p)), (16)

tor p ) is included in the reduced description parame-

ters. Operator o is called the coarse-grained statistical
operator and has functional dependence on description
parameters A(x). Coarse-grained statistical operator

& must satisfy the relation

Ca(x)=5p0 (€)C, (x). (17



Using relations (16) and (17), Liouville equation (1)
and some fundamental properties of Hamiltonian (5) we
can obtain a motion equation for reduced description
parameters

¢, (x)=ispo (€ (x))[ 7., (x)]
; N (1)
—aSpﬁ (C (X ))CA/( (X)’

and integral equation for coarse-grained statistical op-
erator ¢ :

o (¢ (X)) =p—if dee™ {[7,.p]

, 6G(C (x’)) P .
_ Id xWaSPGQAk(X)
8o (¢ (x)) SR g
() oL )}} |

Here p is the initial approximation for coarse-grained

(19)

+ iJ-dlx

statistical operator. In our further calculation we will
assume that

p=w(¥(x'))=
exp{Q(¥ (x)) = [*x'7, (x)C, (x')}.

where Y, (x') are arbitrary functions and Q(Y (x')) is

(20)

determined by normalization requirement

Spw(Y (x'))=1. Such operator contains enough arbi-

trary functions and satisfies spatial correlation weaken-
ing principle.

Further we build perturbation theory for equations
(19) and (20) over small interaction ¥ and small spatial
gradients of description parameters ¢ ,(x). We use the

symbol D" to label the terms of perturbation series
of variable D . The term D"" is derived in of the
n -th order in magnitude of gradients of { ,(x) and of

the m-th order in interaction V. After some transfor-
mations and using symmetry properties we obtain the

following results. Operator w(Y (x’)) is expanded into

series over small gradients:
w(Y(x)) =u® (x)+ w (x)+...,
w® (x) =exp {Q (X)—YA (x)}?A},

Here variables y, are additive motion integrals

@n

Y, = I d’xC ,(x), and thermodynamic potential Q(x)
and thermodynamic forces Y,(x) are derived from
Spw” (x) =1, spw” (x),(0)=C , (x).-
Further we use symbol {...) = Spw'")....

equations

After some transformations (see [2,5]), we get

! __aYA (X) 0
W()(X) "o, wl )(x) o
xJ.;ko‘de’x: (W(O)%CAA (X’)WI(DO)A —<CAA> )

Now we find series expansion for coarse-grained
statistical operator ¢

o(x)= w® (x)+c(°’1) (x)+c(1’°) (x)+...,

) (x) = —iJ:O dve””" [VA,W(O) (x)]eii”’”,
23
’ dt )

o (x)= w) (x)+ a):;xiX) w® (x)j

xJanfdx e (Eh (x0) = (Cl) ) e }

Motion equations for our system can de easily de-
rived using (18) and (23)

aCA 1,0 0,1
)0 ()0 (v

+L(j“]) (x)+ L(/?’z) (x) +L(j’0) (x),

5 .
L (x)= ‘a_SPW(O) (x)&.4 (0),

X

(2,0) __i 0 .
LV (x) = 0x,, o (300w (9), @y
149 (x) = 5w ()] 7., (0) .
PRASIE s
1 (x) =500 ()72, (0]
_ﬂ (0,1) 2

o Spc (X)C&Ak (0)

5. RESULTS: EQUATIONS UNDER
CONSIDERATION

After calculating traces in (24) we obtain a system
of equations, describing the system. We assume that

I;: Zj(pppz)a;apza (25)

Pi-P2

where operators a; ,a  are the creation and annihila-

P2

tion operators of medium. Relation
J" (p,.p,)=J(p,.p,) follows from Hamiltonian her-
micity.

The obtained equation system containes kinetic type
equation for particles and hydrodynamic type equation
for medium. In our calculations we assume that the me-
dium particles are bosons and the particles interacting
with the medium are fermions:
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6f(p’x)+pk 8f(p,X) =L (X)’

ot m  Ox,

¢, (x) G
At ()L ()= 1 (),

Ly (x) =20 328, {1 (51 =2x) £ ) (26)
(1 f(x ) 12(82—el,x)fz(X)(l—fl(X))},

L (¥)=-2%.(p

Expressions for £} (x) and ¢} (x) are the same

as these in conventional hydrodynamics equations (see

[2D).

Collision integral is determined by spectral function

1
I, (o,x)=——
o)=L o

X J.jo dt SPW(O) (X)eﬂ{mt j(l’z)efiﬂmrj(l’z)eimt )

It is easy to show, that L, (x)=0 when condition

7 (p.x)=f,(p,x) = ( Yo(x)ep +, (x)py c(x +1)

takes place, i.e. when the particles distribution function
is Fermi-like, and their mean velocity and temperature
are equal to these of the medium.

(28)

6. HYDRODYNAMIC EQUATIONS

The last fact mentioned in the previous section al-
lows us to assume that such an evolution stage exists,
when the distribution function of particles is close to
locally equilibrium Fermi distribution, though their den-

sity n(x)=Y_ f(p,x) determined by parameter c(x)
p

in (22) is not constant. We use reduced description
method formalism, assuming that distribution function

/(p.x) depends on reduced description parameters
¢, (x) and n(x):

£(p.x) =1 (pin(x).5 (x)).

We obtained our results assuming that particle den-
sity is small enough to use Maxwell’s distribution func-

n(x)9e " For
more convenience we used the following set of reduced
description variables: Medium density p (x), tempera-

(29)

tion instead of Fermi: /' (p,x)=

ture T(x)=1/Y,(x), local velocity
u,.(x): (x)/p(x)=-Y,(x)/Y,(x) and particles den-
sity n( Zf p.X).

The followmg equations are obtained in the second
order of perturbation theory

a—n+V(nu)+V<I):O, %—?+V(np)=0,

- (30.h)
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—+(uV)T+®(Vu)[1—3—nj+—
ot 2pc,
2
_ 3 | n | O
pc, 2pc, )| 2\ 0x, O,

+ [g —?)[Z—:’} +V(KVT)}+pLCV{%cDVp

3L, [A_P_ VoVp ﬁ_a_j}

(30.t)

2 \p p’ 0Ox, Ox,

+LV{K Vn+nme, VT +nk Vp}

pc,
+3 %_Encn s
ap or 3

E(Vu)z{pn(x—"+®n
. ) V. (nT

%+(uV)ui+m[1—@j+M

ot p P P

:l{l_@Jvk (Tlu,k +C8,Vu)+— 1 —V, (1m,uy
p p P

on ou
o,V ——D —k 4V . (nv
+ C.)n ik u} p {axk a i I(}’l u)}

-™p {Gp L (qu)}

(30.v)

p Ox, Ox,

_mnp VTG (eva)
p 6xk Ox,
+ﬂ @4_ 6(1) @ai_’_q)
op on oT

i

Here we introduce new values: particle diffusion

flux vector @®=-DVn-nD VT -nD Vp, medium
. Ou, Ow, 2. Ou
velocity tensor u, =—-+—-—-=3, , heat capacity
ox, Ox, 3 8xl
c, ( 0%, j and effective temperature
! oT
7(571’) . New constants appear in equations (30).
pc,\oT ),
We obtain particle diffusion constants
1 (pY
D G(p
TTar4 ( j 2
€1y

D, = 1 (i’)zA(ﬁ)D %Z(EJZA(;?).

3pp p \M

New kinetic coefficients appear due to transporta-
tion of heat and momentum with particles. They are
thermodiffusivity:

1 pY(p° 3T, .
«=32(2) [ £~ Jath)
3pSiim) \2m 2

o (32)

Iw(pY (P 3T, .
=S| £| £ A

o 321,“(mj (Zm 2) 2
specific particle thermoconductivity
1 pY (P 3T, -

=—>| £ | £ G 33

S 3T;(mj [Zm 5 )6P). 33)



and specific particle viscosity coefficients

nn:Lz[ﬁjzﬁ_z (), £, (R.E)= (13)[ mﬁk[g’;lJ. (41)

154 T
~\2 (4 Due to rotational symmetry, we have:
-7zl o
3 7)3%\m 4, (p)=4(p)b» F(B)=F(P).
Coefficients (32)-(34) can be derived from integral G, (p)=G(p)p,. R, (P)=R(P) B, (42)

equations, containing linearized collision integral

By N
B, =B - )
=2n E 82p{ L, (g, —¢,,X) 4 (D) (p)(p,pk 3P j

(35)
- L (x)1; (Sz ‘81»")}= REFERENCES
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METO/I COKPAIIIEHHOI'O ONMMMCAHUSA B IMHAMUWYECKOM TEOPUU YACTHII,
B3AUMOJEVCTBYIOIINUX CO CPEJIOM

C.A. Hukonaenko, 10.B. Cniocapenko

PaccMaTpuBaroTCsl IPOCTPAHCTBEHHO HEOAHOPOHBIE COCTOSHHS YacTHI, ¢1a00 B3aUMOJEHCTBYIONIMX C THAPO-
JUHAMUYECKOH cpeoif B paMKaxX MeToJla COKpalleHHoro onucanus boromo6osa. [Toka3aHo, 4To y Takoi cHCTEMBbI
CYIIECTBYIOT KHHETHYECKUH ¥ TMIPOJMHAMHYECKUI 3TaIlbl 3BOJIIONMH. Ha KMHETHYeCKOM 3Tale 4acTHIbl OIHCHI-
BAIOTCS OJHOYACTHYHON (pyHKIMEH pacrpesielIeHus], a Cpeaa OMUCHIBACTCS ISATHIO0 THAPOJMHAMHYECKUMHY TTapaMeT-
pamu. IlomyueHa cuctema CBSI3aHHBIX YPABHEHUI ABMKEHUS AJSI IAPAMETPOB COKpAIEHHOTO omucaHus. PaccMot-
PeH mepexoa 0T KHHETHYECKOTr0 K THMAPOJMHAMUYECKOMY 3TaIly 3BOJIOIMU CUCTEMBI. B KadecTBe mapamMeTpoB CO-
KpAalIeHHOTO OMMCaHUs BHIOPAaHBI THAPOANHAMUYECKHE NMapaMeTphl Cpe/ibl U IUIOTHOCTh YacTHll. [lomydeHs! ypas-
HEHUS! IB)KEHHS CHCTEMBI Ha THIPOJIMHAMUYECKOM 3Tarle 3BOJIIOIUHA. DTN YPaBHEHUS MOTYT, B YaCTHOCTH, OIIMCHI-
BaTh HEUTPOHBI, PACIIPOCTPAHSIOIIUECS B cpejie Oe3 3axBara U pa3MHOXKEHHS.

METO/] CKOPOUEHOI'O OIIUCY B JUHAMIYHIN TEOPII YACTHUHOK,
IO B3AEMOJIIOTH I3 CEPEJOBHUIIIEM

C.0. Hikonaenko, 10.B. Cnwocapenko

Po3rnsHyTI MpOCTOPOBO HEOTHOPIMHI CTAHM YaCTHHOK, IO CIA0KO B3a€EMOIIIOTH i3 TiIpOAWHAMIYHUM CEpemo-
BHUIIEM B paMKax MeTOAy cKopodeHoro onmcy boromo6GoBa. ITokasaHo, mo Taka cucteMa MOXe 3HAXOIUTHCS Ha
KIHETUYHOMY Ta TipOJMHAMIYHOMY eramax eBoiiolii. Ha KiHeTWYHOMY erami YacTHHKHM ONHCYIOThCS OJIHO-
YaCTHHKOBOIO (DYHKIIIEIO PO3IO/LTY, a CEPEOBHIE OMHCYEThCS I’ sITbMa TIAPOAMHAMIYHUME napamerpaMu. Otpu-
MaHO CHCTEMY 3B’S3aHUX PIBHAHb PyXY JJIA HapaMeTpiB CKOPOYECHOTO OIMKCy. PO3riisHyTO mepexin Bil KiHSTHYHOTO
JI0 TiAPOAWHAMIYHOTO €TaIry eBOJIONii cuctemMu. [lapaMeTrpaMn CKOPOYEHOTO OmHCy BUOpaHi I’ SITh TigpoAnHAMIY-
HHUX NapaMeTpiB CepelloBUINa Ta I'yCTHHA 4acTHHOK. OTpHMaHO PIBHSHHS PyXy CHUCTEMH Ha TiIpOAMHAMIYHOMY
erari eBoironii cucremu. L{i piBHAHHS MOXYTb, 30KpeMa, OIMCYBaTH HEHTPOHH, IO MOLIMPIOIOTHCS Y CEPEAOBHII
0e3 pO3MHOXKCHHSI Ta 3aXBary.
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