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One-dimensional harmonic oscillator in a quasi-equilibrium medium which consists of non-interacting harmonic
oscillators has been considered. Kinetic equation for this Brownian particle has been derived on the basis of the Bo-
golyubov functional hypothesis. Solution of the kinetic equation was numerically compared with an exact solution
obtained by Bogolyubov. The results of this comparison are presented in a simple graphic form.
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1. INTRODUCTION

This work is devoted to justification of applicability
domain of the Bogolyubov functional hypothesis and
his reduced description method (RDM) on the basis of
an exact solvable model. The RDM (which is based on
the functional hypothesis) is one of basic approaches to
investigation of nonequilibrium processes, therefore the
interest in its verification has become clear.

The kinetics of a one-dimensional harmonic oscilla-
tor in a quasi-equilibrium medium which consists of
non-interacting harmonic oscillators is investigated in
this work. The interaction between the oscillator and the
environment is supposed to be weak. This model was
considered in the paper of Bogolyubov [1], where he
has found its exact solution in a very complex form.

The state of the aforesaid system is completely de-
scribed by the distribution function p(xy,X,?), where
Xy are phase variables of the oscillator and X are
phase variables of the medium. The quasi-equilibrium
environment is described by the equilibrium thermody-
namic parameters, which in general can depend on time
because of a reverse influence of the oscillator on the
medium. The energy of the medium E,,(¢) is selected
as such parameter.

We consider simplification in description of the sys-
tem when its state is determined by the distribution
function of energy of the oscillator w(E,#) and by the

energy of the medium E (). According to the func-

tional hypothesis the distribution function of the system
at long times has the structure p(xq, X, w(?),E,,(t)).

We have derived an integral equation for the distribu-
tion p(xy,X,w,E,,), and also a system of kinetic equa-
tions

W(E, 1) = L(E,w(t), E,, (1)),
E,(t) = L, (W(t), E,, (1))

The mentioned values were calculated in a perturbation
theory in small interaction between the Brownian oscil-
lator and the medium.

The analytical results obtained for w(E,t) by the

RDM are numerically compared with the Bogolyubov
exact solution.

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 331-334.

2. THE KINETIC EQUATION
OF BOGOLUBOV’S MODEL IN THE
REDUCED DESCRIPTION METHOD

The Hamiltonian for our model is the following

H:Hb+Hm+Hbm’ (1)
where the subscript b refers to the Brownian harmonic
oscillator with a frequency @,

Il o2 29
HbZE(PoJFCUoC]o)a )

the subscript m refers to the medium consisting of a big
number of harmonic oscillators with frequencies o,

1Y 5 55
Hm:EZ(pa—’_a)aqa)‘ (3)
a=1

The Hamiltonian of interaction H,, is given by

N
Hbm = zaaquqo > (4)

a=1
where a, are the small values (¢, ~¢, ¢ <1).
Let the initial (when ¢=0) phase variables of the

Brownian oscillator are q8 , pg ; and phase variables of

the medium {q,, p,} are canonical distributed random
variables:
F-Hy
wp=e T &)
(here and further 7 stands for k7).
The Liouville equation for the distribution function
of the system is the following

P(xo, X, 1) =Lp(xg, X, 1), (6)
where
L :Lb +Lm +me :LO "rme N

0, 2
Ly ==po——+@)q0 5>
" 40 o

N o ¥ , 0
Lb =_zpa_+zwaqaa_:
a=1 a qa=1 Pa
N o U d
me = Z%%—+ zaaqO_ (7)
a=1 Po amt  Pa

and
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X =(Po:q0)> X4 =(P459,) s X =(x50005x,) . (8)
The distribution function p(x,,X,¢) satisfies the nor-
malization condition

[ dxodXp(xo, X, 1) =1. )

The formal solution of the Liouville equation can be
written as

p(xy, X 1) = eLtpo(xo’X) ,
where
p()(x()3X) = p(XO,XaO)

We will consider a kinetic stage of the evolution,
when the simplification in the description of the system
state takes place and it is determined by the distribution
function w(E,?) of the Brownian oscillator energy and

(10)

by the medium energy E, (¢f). It means that at time,

considerably larger that time 7, according to a func-
tional hypothesis, p(x,,X,¢) should have the following

structure
P X ) P35y X W(0),E, (1) (11)

>7)

where reduced description parameters w(E,t), and

E (t) are defined by relations

j dx,dX p(x,, X,)0(E — H )———>w(E, 1),

>7

jdxopr(xo,X,t)Hm ——E, (0. (12)

The Liouville equation (6) at times ¢>> 17, takes the
form

P(xg, X, w(0), E,, (1)) = (13)

This equation and definitions Eqs.(14) lead to the
following equation for w(E,t)

Lp(x,, X, w(t), E, (1)).

W(E,t)=L(E,w(t),E, (1), (t>1,), (14)
where
L(E,w,E,) =

6 N
EEjdepr(xO,X,w,Em)5(E—HS_)Zaaqapo (15)

a=1

The kinetic equation for £ (¢) is given by the for-

mula

E, (1) =L, (W), E, (1), (¢ >1,), (16)
where

L,(WE,)=.

z—jdxodxp X, X, w,E, Za QoD (17)

The Liouville equation at the reduced description
Eq.(13) can be written due to Egs. (14), (16) in the form

op(x,, X, W,E )

Lo(x,, X, w, "~ L(E,wW,E,
(%, Sw(E) ( )

E,)=[dE
+6p(-x05X5W7Eb)

o (18)

Lb(W,Eb).

332

For this equation we use the following boundary condi-
tion of the complete correlation

e p(xy, X, W, E, ) ———€""p,(x,, X, W,E,) ,

>7,

(19)

By an usual way [2,3] Eq. (18) with condition (19)
give the following integral equation for distribution
function p(w,E,)

1)
p,(W,E,)=—w(H,)w,(E,).
2

p(W’Em) = pq (W’Em)+ j dreL”T {mep(w’Em)
0

opw, E )L(E, ,Em)_ap(w,Em)
OW(E) OE,

We solve this Eq. (20) for p(x,,X,w,E,) with expres-

sions Egs. (15), (17) for L(E,w,E,) and L, (w,E,) by

iterations in a perturbation theory in interaction constant
£.

~[aE L,(W,E,))..(20)

The results of the calculations up to second order in
¢ are the following

p(O) :,Oq(W E ) - IM =0, L(l) =0;
OW(E)

:—wadTeTL“Za { E

—qopa?w(E)} , L2 =0.

E—H,

(21)
The formula for p" gives kinetic equation for w(E,?)

W(E, t)——TI(a)O) 0 {E( 9, jw(E t)} 22)

OF OE T
where
N 2
I(w)=) % Ya SO0 - @) (23)
a=1 w

So, we have obtained the necessary kinetic equation on
the basis of the RDM. In the considered approximation
the dependence of the medium energy E, () on time is

absent.

3. NUMERICAL COMPARISON OF THE
RESULTS OF DIFFERENT APPROACHES
Bogolyubov has obtained the exact expression for
distribution function of the Brownian oscillator
£,(q,,Py-t) in thermodynamic limit (when N — o0) in

form

£ (4o Post) = P(gy —q (1), py = P (1),0), (24)
where

q ()= gV () + pyv(0),

P ()= () + pyv'(1), (25)
and

0= Zﬂ\/AlC—BZ eXp{CngZEBZZB—‘f Z::)Anz } -0

The functions A(?), B(f), C(¢) are coefficients of the
quadratic form



=

First two graphics show essential distinctions between
the distributions at initial time, but their further evolu-
tion (when ¢>>0.517) is almost identical and they ap-
proach to the equilibrium distribution.

Thus, we have performed the comparison of exact
and approximate solutions and have displayed their

closeness at long times.

A)A® +2B(6) A+ B(e) 1 " PED -
O] (DAu+B(t)u 2 B — [
o t .
=T j dol(o) Jdr{l v(r)+ uv'(t)te 27 03] r
0 0 f
Here function v(¢) is the solution of the following 05 ,’
{
differential equation f
; I
n 2 ’ 04 i
O O j drO(t—t)V'(7), (28) It
0 [
with initial conditions v(0)=0, v'(0) =1, where 021 !
/i
© / i =
) ] t=0.01
o) = Id wl(w)(1-cos wt). 29) 0 ; 3 T 2
0 ] s
The comparison of the exact solution and the result /
of the RDM consists in analysis of the difference be- o8]
tween exact distribution of energy ,,,/ ‘
P(Eat) = J. dQOdpopb(qupoat) 0.6 li
(H,<E)
2E 4(E,py) {
= [ dp | dapi@o.pt). /|
2 -qEp) |
\2E - p} 02] {
q(E, py) =~+——— (30) j
o J." i=0.1
and distribution o IR 2 3 4 5
E 1 .
P(E,f)= j dE'W(E',1) @31 =
0 e
calculated on the basis of the RDM. * S g
Kinetic equation (22) for distribution function ya
w(E,t) is solved by us numerically in dimensionless 0.6 f/
form /
E i 04 Vi
MED _7 0 E(iﬂjw(E,f) , /
ot 2 OE OF Vi
- E . 021 ,;’1"1
=—,i=tA, A=1(w,), (32) /
/ =105
with the following boundary conditions " I 3 3 i 3
~ 5. 1 [
W(E,t) e eiE , 1 —+0; ,_v/""'-'—:i
W(E,{)—>S(E-E,), T —>0; o Y
WE,7) >0, E - +o, (33) Y/
1/
The differential equation (30) has a form of the second 056 ’
Newton's law with a complex dissipative force and is 7
numerically integrated too. r,i'f"'
The results of a graphical comparison of the o g
distributions F)(E,¢) and P(E,t) at different times are r
shown in the figure. The parameters of this experiment 021 [,fff'
are i N
~ . / i=5
A=0.006, E,=2.5 @,=0.001s" o 7 3 I 2
E
distributions P(E,t) and

Comparison of the
P\(E,t) at different times. Dotted line shows the exact

solution, solid line shows the result of the reduced de-

scription method
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1. N.N. Bogolyubov. Elementary example of transition

We have numerically compared solution of the ap-
proximate kinetic equation, which is obtained with the
help of functional hypothesis, with the exact solution. It
was shown that at long times the RDM leads to energy
distributions which are close to one another.

In the next paper we plan to compare the Bo-
golyubov exact result with consequences of the kinetic
equation of the third order approximation in interaction.

HCIOJb30BAHUE YHCJIEHHOI'O MOAEJIMPOBAHUA IVI5I IPOBEPKH
OYHKIHMNOHAJBHOU I'NITOTE3bI

A.U. Cokonoeckuii, 3.10. Yenoaesckuii

PaccMoTpeH 0JHOMEpHBIM TapMOHMYECKUN OCLUMILISATOP B KBa3UPABHOBECHOM Cpene, KOTOpask COCTOMT U3 He-
B3aNMOZAEHCTBYIONINX IAPMOHUIECKUX OCIMIIIATOpoB. Ha ocHOBe (yHKIMOHAIpHON runoTe3sl boromobosa moiry-
YEHO KMHETUYECKOE YpaBHEHHUE ISl 3TOH OpPOYHOBCKOW 4acTHUIIbI. PeleHne KMHETHYECKOro YPaBHEHUS YMCIEHHO
CPaBHEHO C TOYHBIM PEILIEHUEM, MOITydeHHbIM boromro0oBbM. Pe3ynbpTaTsl cpaBHEHHS NPEICTaBICHBI B IPOCTOMN
rpaduyeckoit popme.

BUKOPUCTAHHS YHCEJBHOI'O MOAE/TIFOBAHHSI JISsI TEPEBIPKH
®YHKIIOHAJIBHOI I'IIOTE3HN

O.U. Cokonoecovkuit, 3.10. Yenoacecokuit

Po3rnsHyTO OOHOBUMIpHUI TApPMOHIYHUH OCIIIIIATOP Y KBa3ipiBHOBAKHOMY CEpEIOBHILI, SKE CKIAIAEThCS 3 Ta-
PMOHIYHHX OCHHJIATOPIB, IO HE B3aeMOJit0Th. Ha ocHOBI (hyHKIiOHANBHOI rimote3n boronxrodoBa omepkaHo KiHe-
TUYHE PIBHSHHS I i€l OpOYyHIBCHKOI YaCTHHKH. PO3B’ 130K KIHETUYHOTO PIBHSHHS YHCETHHO IIOPIBHSIHO 3 TOUHUM
PO3B’s3K0M, ofepxanuM boromo6oBum. [lincymkn NOpiBHSIHHS IpeACTaBIeHI B IPOCTiii rpadiuniit Gopmi.
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