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1. INTRODUCTION 

The kinetic evolution processes in non-equilibrium 
physical many-body systems are described on the basis 
of probability theory representations by many-particle 
distribution functions (see, for example, [1]). However, 
probabilities defined by distribution functions are not 
observed by direct experiments. Physically measured 
values are modeled by some mathematical expectations 
on the probability distribution defined by the set of 
many-particle distribution functions. These averages are 
connected with the special class of random values which 
are called summing functions of various order 

[1]. They are represented by sums of typical 
random values which are contributions of l -particle 
groups. Only such averages are available to direct ob-
servation. The standard problem of non-equilibrium 
statistical mechanics is the obtaining of evolution equa-
tions for these averages. Such equations, as a rule, may 
be not obtained accurately by the corresponding averag-
ing of the basis of evolution equations for many-particle 
distribution functions. As a rule, they are obtained in 
frames of an asymptotical expansion procedure in a 
small parameter. The most famous example of such a 
procedure is the Chapmen-Enskog method [2]. It is 
connected with calculation of non-equilibrium averages 
when the evolution equation is formulated in the so-
called "average field" approximation. Nevertheless, 
there are some kinetic processes of special type when 
this approximation gives the exact kinetic equations. 
The aim of this work is the demonstration of the fact 
that the so-called cascade evolution processes are re-
lated to such a random process class [3]. They consist of 
the particle multiplication by the definite physical 
mechanism. Each particle of the system is characterized 
by the collection of physical parameter values. The es-
sential peculiarity of the cascade multiplication process 
is the evolution independence of each subsystem con-
nected with any separate particle on analogous subsys-
tems. Of course, this independence property is the ap-
proximation from the physical point of view. However, 
at the description of many physical processes, it is justi-
fied. The examples of such cascade processes are elec-
tron-photon showers [4], the multiplication of nucleons 
in their collisions with heavy nucleons [5], cascade 
processes in solids [6], mechanical destruction of solid 
medium to some separate fragments [7]. In this work, 
we propose the mathematical model of cascade proc-

esses such that they are represented by Markov branch-
ing random processes with continuum particle types. 
We show that the closed linear kinetic equations for 
summing averages are realized for such processes. 
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2. DISCRETE TIME CASE 

Here, we deduce the mentioned evolution equations 
in the case of discrete time. It is done not only for me-
thodical aim. The using of discrete time is suitable in 
some phenomenological statistical physical models. 

Let particles be elements of physical system under 
consideration and they are characterized by one positive 
parameter . For definiteness, we name it as the 
energy. Then, each  particle, , is charac-
terized by the value  of this parameter. At each time 
moment , the system is characterized by the ran-
dom number  of particles and the set  
of random energies which are the characteristics of all 
particles. Therefore, we describe the statistical system 
state at each fixed time moment  by the set of distribu-
tion densities . They are some 

symmetrical functions on . These densities are de-
fined by such a way that integrals  
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(hereinafter, all integrations on variables  are done on 
) represent the probability  of the fact that 

there are  particles in the system at the moment . In 
this case,  
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It is necessary to formulate the evolution equation of 
functions  . We solve this 
problem supposing that the time t  is discrete, i.e. 

 , . At the next section, we shall 
formulate the integro-differential equation with con-
tinuous time. 
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In the case of the discrete time , we consider that 
the cascade process possesses the memory loss, i.e. the 
system statistical state which is characterized by the 
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probability distribution at the time  depends 
only on the probability distribution at the moment l  
and it does not remember all previous history. Let us 
introduce the conditional probability distribution densi-
ties  of the tran-
sition from the state  at the time moment 

 to the state 〈 . They are symmetrical 
functions on argument groups  and r  and 
they satisfy to the normalization condition 
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Then, the evolution equation of the process which is the 
Markov chain in this case, is represented in the form  

 (3) 

It is necessary to consider all conditional densities 
 as independent ones of the time  when there ex-

ists the physical temporal uniformity at the evolution 
process description. The equation (3) together with the 
condition (2) guarantees the conservation of the nor-
malization (1) at each time moment. 

If the cascade process has such a property that parti-
cles does not disappear at each step, then the summation 
in Eq.(3) spreads only on the values . Let us 
introduce the conditional distribution densities 

,  which are symmetrical on 
arguments  and satisfied the normalization con-
dition  

 (4) H

Each of mentioned densities determines the decay 
probability of the particle with the energy  into  par-
ticles with energies  at some fixed time moment 

. In addition, keeping in mind that values ,  
are called energies by conditional way, the energy con-
servation law  does not necessary take 
place at each decay event. Usually, ones consider such 
cascade processes when, at each evolution step, the de-
cay of each particle into new particles at any fixed time 

 happens independently of other particles having ap-
peared up to . In this case, the conditional densities 

 are expressed by means of densities  using the 
so-called branching conditions  

 (5) 

where the summation is done on all disjunctive subdivi-
sions  of the number set 1,2,..., , i.e. 

 at i  and . Besides, the 

shortened designation  
 has been introduced where 

. On the basis of Eq.(4), it is simple to 
verify that densities  defined by the formula (5) 
satisfy the normalization condition (2). 
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The equation (3) with the branching condition (5) 
completely determine the cascade evolution process by 
means of the set of transition conditional densities 

, . Our next problem is to ob-
tain kinetic equations (with discrete time) for above 
mentioned average physical values using Eq. (3). For 
this, let us introduce into consideration the generation 
functional  of the probability distribution 

. It describes the statistical state 
of particle system at each time moment by the equiva-
lent way. We define this functional on sufficiently rap-
idly decreasing functions u , r  by the formula  (

j (6) 

Function  of the conditional probability distribu-
tion is defined by the set of conditional distribution den-
sities , ,  

...

j  (7) 

Therefore, it depends additionally on the parameter 
. Using definitions (6), (7), we find  

.  (8) t

on the basis of Eq.(3) and the formula (5). Let us define 
the particle density with energy  by the mathematical 
expectation  

(
(1

 

It is evident that  

δu
H  

On the basis of Eq.(8), we find the self-consistent 
evolution equation  
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for this density. Here,  
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is the average number of particles having the energy  
and formed from particles having the energy r  at the 
time moment  during one evolution step. It satisfies 
the following equation  
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These functions are determined by the generation 

functional,  
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However, unlike the equilibrium statistical mechanics 
system (see, for example, [1]), the evolution equations 
for these functions are self-consistent, since the chang-
ing of the function );,...,( 1 trr lmρ ,  during 
one evolution step is determined completely by the den-
sity values at the given time moment . Really, intro-
ducing the average  
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formula of the composite function, that 
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3. CASCADE PROCESSES  
WITH THE CONTINUOUS TIME 

As above, we consider cascade processes with ran-
dom states described by sets {  of any random 
length  at each time moment where , 

. Probability distribution of such random 
states is described by the set of symmetrical densities 

 at each time moment t . 
They satisfy the normalization condition (1). 
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Let us introduce the conditional probability distribu-
tion densities 〈  
of the transition from the state  at any time 
moment  to the state  at the time moment 

. They satisfy the normalization condition  
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for any t  taking into account the complete probabil-
ity formula. In the case when the cascade process is 
markovian, i.e. the memory about the past is absent, the 
conditional transition densities  satisfy the Chap-
men-Kolmogorov equation which has the form  
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in our case. Then, it follows from Eqs.(12) that these 
equations connect the densities ,  at any dif-
ferent time moments  and ,  
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In particular, if there is the temporal uniformity, condi-
tional densities  depend only on the difference 

 but not on each temporal argument separately. 
For a markovian process, the evolution equation for 

densities  and ,  follows from Eq. (13). 
Namely, after the substitution t , , and 
using the smallness of  the following expansion can 
be written down  
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From the functions  normalization conserva-

tion, it follows that  
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Let us take into account that the investigated cascade 
process is jump-like, i.e. the described stochastic evolu-
tion is represented by the sequence of jumps from one 
state to another occurring at random time moments 

. Then, at small , with assumption that 
there exists the nonzero average time between two se-
quential jumps, the probability  is the sum 
of probabilities of two events: the probability 
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of the fact that there is no transition. From this, it fol-
lows that  
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that is the so-called detail balance principle. Tending 
 after the substitution of the expansion (15) to 

Eq.(12), we find  
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Let us express the transition frequencies 
 through more elementary 

quantities, i.e. frequencies of particle decays in the case 
when the process is cascade-like. As above, let us take 
first into account that particles do not disappear and, 
therefore, the summation in Eq. (18) spreads only on 
values . We introduce the conditional distri-
bution densities ,  of the 
decay of the particle with energy  to  particles with 
energies  at the time moment t . They are 
similar to densities  and, therefore, 
they satisfy the normalization condition (4). Further, we 

construct the conditional densities  on the basis of 
introduced densities using the branching condition  
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where designations are similar to those used in Eq. (5). 
Substituting the representation analogous to one per-
formed by Eq. (16) but at a small ,  ∆
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into Eq.(19), we obtain that Eq.(15) takes place with the 
condition (16) where  
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cays of the particle with energy r  to  particles with 
energies , 
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Using definitions (17) and (20), we find  
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Substituting Eq. (20) and Eq. (22) to Eq. (18), we 
come to the equation system numerated by index 

. It determines completely the cascade process  Nn∈
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Let us introduce into consideration the generation 
functional  of the set  
corresponding to Eq. (6). Having defined the functional  
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on the basis of the equation system (23), we obtain the 
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From this equation, by the differentiation over  at 
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ВЕРОЯТНОСТНОЕ ОПИСАНИЕ КАСКАДНЫХ КИНЕТИЧЕСКИХ ПРОЦЕССОВ 

Ю.П. Вирченко, Р.Е. Бродский 

Даётся общий вывод кинетических уравнений для каскадных процессов, основанный на представлениях 
теории марковских ветвящихся случайных процессов, как в случае дискретного, так и в случае непрерывно-
го времени. 

 

ІМОВІРНОСНЕ ОПИСАННЯ КАСКАДНИХ КІНЕТИЧНИХ ПРОЦЕСІВ 

Ю.П. Вірченко, Р.Є. Бродський 

Дається загальне виведення кінетичних рівнянь для каскадних процесів, основане на представленнях те-
орії марківських гілчастих випадкових процесів, як у випадку дискретного, так і у випадку неперервного 
часу. 
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