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The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform 

initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the 
auxiliary vector-valued random process such that the particle velocity distribution function satisfying the Boltzmann 
equation is the first order marginal probability distribution of this random process. 

PACS: 25.20.Dd 
 

1. INTRODUCTION 
The Boltzmann equation has got the origin of the 

physical kinetics. Building of the equation and its 
physical predictions have played the great role during 
the development of representations concerning evolu-
tion irreversibility that are taken place in nature. Later, 
this equation has got also the practical mean for calcula-
tion of kinetic coefficients of real gently dense gases 
and also for the study of the motion of solids in the di-
lute gas environment. In this connection, the mathe-
matical correct results concerning some solution proper-
ties of the Boltzmann equation have gained special im-
portance. In particular, the Cauchy problem solvability 
of the equation is of interest. First results in this direc-
tion have been obtained by D.Hilbert [1] and 
T.Carleman [2]. All stationary solutions of the Boltz-
mann equation have been found and the theorem of the 
final behavior of solutions at the unbounded increasing 
of time has been proved. Besides, the spectrum of corre-
sponding linearized equation has been investigated. Fur-
ther, in connection with the development of the ap-
proximate methods of the equation solving, the Chep-
men-Enskog asymptotical analysis has been created [3]. 
The modern state of the mathematical physics area 
which is connected with the Boltzmann equation see in 
[4]. In the present work, we propose the new approach 
to study the Boltzmann equation solutions which is 
based on the random process theory. This method per-
mits to approach in a new fashion to the Cauchy prob-
lem solving of the Boltzmann equation and to the con-
struction of approximations of corresponding solutions 
with the controlled accuracy. 

2. THE BOLTZMANN EQUATION 
For formulation of the Boltzmann equation in the 

form that is convenient for our aim, it is required the 
following presentation of scattering data in the classical 
mechanics for the pair of identical particles. Let  and 

 be two particle velocities before the collision when 
they are on such a distance where one may consider 
them as the noninteracting ones. Further, let  and  
be corresponding velocities after the collision when the 
particles have gone away so far that they become nonin-
teracting again. These velocities are represented by the 
definite functions of velocities ,  and the vector  

which is on the plane being orthogonal to vectors 
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, i.e. . On the defini-
tion, the vector  begins at the straight line on which 
the first particle arrives from the infinity and it is fin-
ished at the analogous straight line of the second parti-
cle. The vector r  has the minimal length among all vec-
tors possessing the properties pointed out. The functions 

,  are defined by the interaction potential 
 between two particles, where  are 

space position vectors of particles. 
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For the determination of these functions, it is neces-
sary to solve the mechanical scattering problem of two 
particles interacting by means of the potential . Fur-
ther, we consider only the spatially homogeneous gas of 
particles. In this case, the Boltzmann equation is formu-
lated for the distribution function  that depends 
on the velocity  of the mentioned particle and the time 

. It has the following form (see, for example, [5]) 

)t

 (1) 

where the dot means the differentiation on , the pa-
rameter  represents the density of particles and 
the integral on  points out the integration on all val-
ues of the vector . 

The function  is the probability density func-
tion, i.e.  and the equality 

  (2) 

takes place. The functions  
have the properties 

),'), rVr

2'v  (3) 
which express the conservation laws of momentum and 
energy at collisions. From Eq. (3), the equality of rela-
tive velocities follows, 

. (4) 
Besides, the symmetry property 

 (5) 
takes place. It corresponds to the particle identity. Let us 
introduce the vector function n , 
satisfying to the equality 

1=,( v'v
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Further, we notice that for the complete 
characterization of the scattering of two particles, it is 
necessary to introduce, in addition to th tions V , 
V' , the vector funct ),,( rv'vR  also. Its values lay in 
the plane being orthogonal to v cto  V , V' . The vector 
R  is defined similarly to the vector r  but it is done 
relative to the straight trajectories of particles going away 
with the elo ies V , V' . From the energy and 
momentum conservati ality || R
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n, the equo r|| =r=  fol-
s. The reversibility of mechanical motion leads to the 

fact that the functions  sat-
isfy to identities 

,  (7) 
),' RV,( VRr −=and, besides, . 

In the case when the potential is spherically symmet-
ric, all vectors  lay in the common plane. 

Let us transform the right-hand side of the equation 
(1) to another form which is more suitable for our con-
struction. With this aim, introducing the additional inte-
gration by means of -functions, we write down 
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The non-negative function  is named the intensity of 
scattering ',', uuvv ⇒
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 process. It is determined by 
the formula 

.
 (9) 
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According to Eqs. (5,7), it satisfies to the following 
identities 

, (10) 
;,(w)',;,(w vu'uuuv'v −−−= . (11) ∫

The function w  contains the δ -functional 
singularities which are connected with conservation 
laws. Indeed, changing the argument of the second -
function in Eq. (9) according to the first identity of 
Eq. (3) and also using the condition presented by the 
second -function, we obtain 
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We change the function  in the integrand expression 
according to Eq. (6) and we use the first identity of 
Eq. (3), 

σδσδ d|)'|(d)(∫ ∫ −−−=− vvnu'uuV 2
δ

. 
Decomposing three-dimensional -function depending 
on the vector argument  on the product 
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and after that transforming the first -function with the 
account of equality  which is carried out 
in the integration domain, we find 
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Since the function  realizes one-to-one corre-
spondence between the plane of the vector r  changing 
and the unit sphere, the last integral is equal to the Jaco-
bean of corresponding map 
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where | . Together with Eq. (12) 
and Eq. (13), it gives the final formula 
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3. M.KAC PROBLEM 
Solutions which possess the following properties: 
a)  at all , if ; 

vv d)t,(f∫b)  does not depend from t , 
R3

we name as the probabilistic ones. 
In connection with the existence of probabilistic so-

lutions of the equation (1), M. Kac has set the problem 
[6] of the construction of such a random process 

0≥t);t(~v )t,(f v for which the function  is the first 
order marginal distribution density, 

)}()t(~{
)(d

)t,(f vv
v

v ω
ω

∈= Prd

R

)t,;...;t,(f vv

)t,(f)t,(f vv =

)]t,(f[f)t,;...;t,( vvv =

),0 ∞
),(f)(d/)}()(~{d 00 vvvv =∈ ωωPr

. (14) 

This function should completely define the probability 
distribution of the process in its sample space 

, i.e. the function should define all set 

of marginal distribution densities  
of order , which are consistent, i.e. 
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They generate the process probability distribution ac-
cording to the Kolmogorov theorem. It means that 

 and all densities of higher order are 

some functionals . 
1

f nnnn 11
Constructive building of such a random process on 

 for which the probability distribution of initial 
values satisfies  
solves the Cauchy problem on  for the equation (1) 

with initial data . Below, we offer a building of 
this process in the case of finiteness of cross-section of 
particles scattering. 
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4. THE WEAK SOLVABILITY 
We construct the process 0≥t);t(~v  as the weak 

limit in the space  of the sequence +R)R( 3

...,N,t);t(~ )N( 210 =≥v of random processes. It 
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means that all marginal densities 
 converge weakly at 

 to the infinite set of densities 
 consistent with each other, 

i.e. sequences of corresponding characteristic functions 
converge 
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. 

In particular, the weak convergence 
 to the Boltzmann equation solu-

tion takes place. 
We use the Prokhorov criterion of weak compact-

ness measure sequence for the proof of the weak con-
vergence of random processes sequence. It is formulated 
as follows. 

If the sequence of measures  on a 
metrical separable space L  (being not necessarily 
complete) such that for this sequence there exist a com-
pact function Ψ  on space  having uniformly bounded 
average values on measures , 

, so this sequence is weakly 

compact. 
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We choose the space of all piecewise constant func-
tions  with vector values as the sample 
space  of all processes. 

Each random trajectory  is characterized by the 

sequence of pairs 
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where the summation is carried out on all jumps of both 
functions being in the one-to-one correspondence ac-
cording to their order on . If one of the functions, 
for example,  has greater number of jumps in 
comparison with the other function, so it is necessary 
formally to put that the last has zero jumps in those 
points  where jumps  do not have correspond-

ing jumps . 

The functional  is the deviation on  be-

tween two functions . The functional 
 defined by the formula 
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is the deviation too. Here, points  are set in one-
to-one correspondence according to the one-to-one cor-

respondence between jumps of the functions 
. It is easily to verify that the functional  
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is the distance in the space L  between functions 
. The space  is separable relative to this 

distance. Besides, it is established that those function 
sets for which the jump number does not surpass any-
thing number , are precompact relative to the 
topology connected with the distance . There-
fore, for the fixed interval , we construct the 
function  on  putting that its values for each 
function  are equal 
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random number of its jumps on . Then, we get 
that sets {  are compact for any 

 and, hence, the function Ψ  is compact. 
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5. THE BOLTZMANN RANDOM PROCESS 

We construct the random process +∈Rv t);t(~

σ

 

which solves the Kac problem. It is named the Boltz-
mann process. At the assumption of the cross-section  
finiteness, we introduce the functional 
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In terms of introduced values, equation (8) is repre-
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Let us require that the first order marginal densities 
 of the processes ...,21=
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where  and . N ∞→N
To achieve this aim, we construct for any  the 

random process 
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of random variable  at the moment l . This den-
sity is changed during one evolution step by the follow-
ing way 
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The changing points of the process 
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Since all random points of the chain are in one-to-one 
correspondence with changing points of the process 
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where the squared average  of the velocity 
 does not depend on t , since the Boltzmann 

equation conserves the kinetic energy. Thus, due to the 
inequality (24), one may apply the Prokhorov criterion  
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Therefore, the one-point probability density  of 
the limit process 

),(1 tf v

+∈Rv tt);(~  satisfy to Eq. (1), i.e. 

the existence of the random process +R∈v tt);(~  leads 
to the existence of the weak solution of the equation (1). 
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ПОСТРОЕНИЕ ВЕРОЯТНОСТНЫХ РЕШЕНИЙ УРАВНЕНИЯ БОЛЬЦМАНА 

Ю.П. Вирченко, Т.В. Карабутова 

Предлагается метод доказательства разрешимости задачи Коши для кинетического уравнения Больцмана 
с пространственно однородными начальными данными в случае конечности сечения рассеяния сталкиваю-
щихся частиц. Метод основан на построении вспомогательного векторнозначного случайного процесса, та-
кого, что функция распределения по скоростям частиц, удовлетворяющая уравнению Больцмана, является 
его частным распределением вероятностей первого порядка. 

 
ПОБУДОВА ЙМОВIРНОСТНИХ РОЗВ’ЯЗКIВ РIВНЯННЯ БОЛЬЦМАНА 

Ю.П. Вiрченко, Т.В. Карабутова 

Пропонується метод доведення розв’язання проблеми Коші для кінетичного рівняння Больцмана з прос-
торово однорідною початковою функцією у випадку скінченності перерізу розсіяння частинок, що 
зiткаються. Метод оснований на побудові векторнозначного випадкового процесу такого, що функція роз-
поділу за швидкостями частинок, яка задовольняє рівнянню Больцмана, є його частинним розподілом ймо-
вірностей першого порядку. 
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