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Stationary self-focusing of whistler waves, which propagate along magnetic field with frequencies below half 

electron-cyclotron frequency is considered in the framework of two-dimensional generalized nonlinear Schroedinger 
equation. It takes into account electrostatic wave component of whistler waves and nonlocal nonlinearity caused by 
plasma heating during intense whistler  wave propagation,  which may be essential  in laboratory plasma and in 
ionospheric experiments. Necessary conditions for stationary nonlinear self-trapping in self-sustained waveguides 
are found and their stability confirmed both analytically and numerically.
PACS: 52.35.Mw

1. INTRODUCTION
Whistler  or  helicon  wave  is  one  of  the  most 

frequently  observed  waves  in  magnetized  laboratory 
plasmas, in the ionosphere and the magnetosphere of the 
Earth and in the plasma of solids. In spite of intensive 
investigations since the beginning of the last century the 
nonlinear properties of the whistler waves are still not 
well  understood.  As  known,  the  stationary  whistler 
waveguide  formation  in  density  troughs  has  been 
experimentally demonstrated in laboratory plasma both 
below  [1-3]  and  above  [1,2]  half  electron  cyclotron 
wave  frequency  (ωc/2).  In  these  experiments  plasma 
heating during intense wave propagation have  caused 
density troughs (wells) along wave beam propagation. It 
is  well  known,  that  at  ω=ωc/2  the  sign  of  group 
velocity,  perpendicular  to  an  external  magnetic  field 

zeBB 
00 = , changes. For both dispersive regimes (for ω 

both  below  and  above  ωc/2)  in  linear  approximation 
wave beam spreads out due to diffraction [4]. One can 
expect, however, that due to plasma density changing, 
induced by intense HF wave, refractive index may vary 
in  such  a  way  that  to  compensate  linear  wave 
diffraction.

Conventional  model of  self-focusing of  the wave 
propagating  in  z-direction  bases  on  nonlinear 
Schrödinger equation (NSE): 

0)|(|ˆˆ 2 =ΨΨ+Ψ+Ψ∂ NDi z , (1)
where  only  the  lowest  order  dispersive  (diffractive) 
effect  is  taken  into  account:  Ψ∆=Ψ ⊥DD̂  (here 

2222 yx ∂∂+∂∂=∆ ⊥  is  Laplacian  operator),  and 
refractive  index  is  supposed  to  depend  on  wave 
intensity  2|| Ψ  linearly  ( 22 ||)|(|ˆ Ψ=Ψ BN ).  The 
problem  is  that  such  oversimplified  model  fails  to 
explain the experiments. Actually, in the case  ω<ωc/2 
(DB<0)  thermal  nonlinear  effect  increases  beam 
spreading, and in the case ω>ωc/2 (DB>0) self-focusing 
is so strong that may give rise to wave beam collapse. It 
was shown in [4] that taking into account the saturation 
of  nonlinearity  and  higher  order  dispersion 
(polarization)  effects  one  can  explain  formation  of 
stable whistler waveguids in both regimes. Other higher 
order  nonlinear  effect,  which  may  be  even  more 
essential  than  saturation  of  nonlinearity  [5,6],  is  the 
nonlocal  thermal  wave  response  caused  by  thermal 

conductivity.  For  not  too  high  intensities,  in  the  so-
called  weak  nonlocality  limit,  this  effect  can  be 
described by additional term of the form 2|| Ψ∆ ⊥C  [7]. 
Nonlocal  nonlinearity  may  be  also  very  important  to 
describe  two-dimensional  (2d)  Langmuir  solitons  [8] 
and  2d  upper-hybrid  (UH)  wave  structures  [9],  2d 
structures in molecular lattices [10, 11] in atomic Bose-
condensate [12], and power optical beam propagation in 
vapors accompanying atom diffusion [13]. For whistler 
wave propagation with frequencies ω>ωc/2 a saturation 
of nonlinearity [4, 14] or defocusing nonlocal nonlinear 
effect [8,12] may arrest wave collapse. Therefore, each 
of  these supplementary effects,  even taken separately, 
let  to  explain  a  formation  of  coherent  2d  structure. 
However, below half electron frequency a formation of 
stationary  whistler  waveguides  in  troughs  may  be 
possible  only  due  to  competition  of  nonlinear  effects 
with  higher-order  dispersion.  The  same  is  true  for 
formation of UH 2d structures in anomalous dispersion 
region ( 22 3 cpe ωω < ), which was shown in [9].

Here  basic  generalized  NSE  (GNSE)  including 
fourth  order  dispersive  effects  and  nonlocal  thermal 
self-focusing  effects  for  description  of  whistler  wave 
propagation is derived. It is demonstrated that there may 
exist at least two soliton branches with the same number 
of quanta, but different spatial scales. Their stability has 
been analyzed both analytically and numerically against 
small and finite perturbations. In the framework of our 
model, we predict an existence of new type of whistler 
wave  beam  stationary  structures,  which  have  curved 
wave  front  (their  phase  varies  nonlinearly  in 
perpendicular  to  beam  propagation  plane).  In  linear 
approximation, such wave beams would either converge 
or spread out. 

2. BASIC EQUATIONS
To  describe  intense  whistler  propagation  along 

magnetic  field,  taking  into  account  their  mixed 
polarization and thermal nonlinear effects, we use the 
GNSE in the form:

0||)()( 2 =Ψ∆+Ψ+Ψ∆∆++Ψ∂ ⊥⊥⊥ CBPDi z . (2)
It includes dispersive effects of the second, as well as of 
the  fourth  order  (terms  proportional  to  D and  P 
respectively)  and  combination  of  cubic  nonlinearity 
with nonlocal nonlinearity (terms proportional to B and 



C). (Derivation of the GNSE (2) see in the Sec. 5.)
Any  localized  wave  packet  envelope  ),( zrΨ

conserves the following finite integrals of motion during 
its  evolution  in  z direction:  (i)  number  of  quanta  (or 
“energy”):

∫ Ψ= rdN
2 (3)

(ii)  momentum,  (iii)  angular  momentum,  which  are 
equal to zero for radially-symmetric solitons, and (iv) 
Hamiltonian:

−Ψ∆−Ψ∇= ∫∫ ⊥⊥ rdPrdDH  2222 ||||
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For whistler wave with  ω<ωc/2 propagating in density 
troughs one should put D>0, P>0, B<0, C<0 (see Sec. 
5). As was demonstrated in Ref. [9], the Hamiltonian 
(4) is bounded functional at C ≤ 0), which guarantees an 
existence of stable background soliton solution:

zierzr Λ=Ψ )(),( ψ


, (5)
where  Λ is  the  propagation constant  or  the nonlinear 
shift  of  z-component  of  wave  number.  The  function 
describing  soliton  radial  profile  )(rψ  satisfies  the 
ordinary  differential  equation,  which  after  rescaling 
transformations  DPr ρ= ,  PD 2λ=Λ , 

)|(|)()( 2 PBDUr ρψ =  may be rewritten as follows:

0|||| 222 =∆+−∆+∆+− UUUUUUU ρρρ σλ ,
 (6)

where 

PBCD=σ , 
dr
d

rdr
d 1

2

2
+=∆ ρ .

Below  the  two-parameter  (with  parameters  λ and  σ) 
soliton  family  is  investigated  analytically  and 
numerically.

3. VARIATIONAL ANALYSIS
As known, solution of the GNSE (2) corresponds to the 
extremum  of  the  action  functional:  02 =ℑ∫ dzrd 

δ , 

where ℑ  is the Lagrangian density for Eq. (2). Taking 
into account variation (with  z) of the phase and of the 
spatial  scale  of  arbitrary  wave packet  we  choose  the 
normalized trial function in the form:

)()cosh(ln)())((
2ln2

)(),( zirzierzfNzzr Φ+=Ψ µγµ
π

µ
,

(7)
which  satisfies  the  reduced  variational  problem  with 
Lagrangian

{ } HrdiL zz −Ψ∂Ψ−Ψ∂Ψ= ∫
2**

2
, (8)

where  H is the Hamiltonian (4) with the trial function 
(7). Introducing the new longitudinal distance variable: 

∫=
z

d
N

0

2 )(1 ααµη ,

one  can  obtain  after  Ritz  optimization  the  set  of 

canonical  equations  describing  evolution  (with  z)  of 
parameters  of  cylindrically  symmetric  localized  wave 
packet:
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d , , (9)

where γ µβ =  and Hamiltonian in variational approach 
with the trial function (7) is:
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where we introduced the following integrals:
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here  radial  profile  is  chosen  to  be  ξξ cosh/1)( =f . 
Obviously,  the  stationary  soliton  solution  with 
parameters  0µ  and  0β ,  which do not change with  z, 
corresponds to the stationary point of the Hamiltonian. 
These  2d  solitons  correspond  to  a  formation  of  the 
stationary  self-induced  whistler  waveguide.  The  trial 
function  (7)  with  0≠γ  takes  into  account  possible 
phase front curvature of the ducted whistler wave beam. 
Indeed, the set of equations
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has two types of the solutions: (i) the ordinary soliton 
solution  with  zero  phase  curvature  parameter 00 =β  
and

)2(2
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(ii)  the  soliton  (wave  beam) with  curved  phase  front 
(CPF) having parameters
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where ββµ pppdd IIIII 2)(~ −−= , 

ββµ pppp IIII 4)(~ 2−−= .
Below we consider mostly case  D>0, P>0, B<0, 

C<0,  which  corresponds  to  a  stationary  waveguide 
formation.

It is important to find the stable solitons among a 
manifold of obtained variational solutions. A soliton is 
stable  if  it  corresponds  to  extremum  (minimum  or 
maximum)  of  the  Hamiltonian  (10).  In  this  case  any 



deviation from the extremum point ),( 00 βµ  would lead 
to  change  of  the  Hamiltonian,  which  is  impossible 
because of its conservation. Obviously,  soliton,  which 
corresponds  to  a  saddle  point  of  the  Hamiltonian,  is 
unstable. 

It is convenient to investigate soliton properties at 
fixed parameter PBCD=σ . Results of the variational 
analysis may be summarized as follows:
1. 301.0~~ ==< cdbpc IIIIσσ  (see  Fig.  1 a).  If 
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In this case solitons with CPF are always unstable.
2. crc σσσ <<  (see Fig. 1 b). The N-dependence of 

parameter 2µ  for ordinary solitons and for solitons 
with CPF changes dramatically. As before, ordinary 
solitons are stable at crNN > . Furthermore, a pair 
of  stable  solitons  with  CPF  (corresponding  to 
parameter  values  0ββ ±= )  appears  at 

crNNN <<0 , where bd BIIDN ~20 = .
3. ocr σσσ <<  (see  Fig.  1.c.)  Ordinary  solitons 

become unstable. Stable soliton branch corresponds 
to solitons with CPF.

4. oσσ >  (see Fig.  1.d) This case is  similar to the 
previous one, but the branch of unstable ordinary 
solitons appears for 22

∞> µµ .
As  was  demonstrated  in  Ref.  [4]  for  the  cubic-

quintic  (CQ)  media  and  in  Ref.  [9]  for  media  with 
nonlocal  nonlinearity,  soliton  profile  has  pronounced 
oscillating tails if DP>0. The variational analysis, which 
takes into account oscillations of soliton profile as well 
as  radial  variation  of  the  soliton  phase,  has  been 
performed in Ref. [9] using trial function of the form:
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where  )(0 xJ  is  the  Bessel  function  of  zero  order. 
Soliton solution gives an extremum to Hamiltonian at 
fixed  number  of  quanta.  It  was  demonstrated,  that 
oscillating  nature  of  soliton  is  crucial  for  right 
description of solitons especially nearby the threshold 
value of number of quanta for soliton existence, where 
the scale of the oscillations  1−κ  becomes of the order 

of DP 2  when 02
1 →µ , so that the third variational 

parameter  13 µκµ =  tends to infinity.  Note that, the 
variational analysis with the trial function (7), predicts 
an existence of a soliton branch with nonlinear spatial 
scale of order of  BC .  This gives rise to the view, 

that  in  the  case  under  consideration  coexist  two 
branches of the solitons with the same number of quanta 
but different spatial scales. 

Fig. 1. Variational parameter 2µ vs numbers of quanta 
N. Solid curves represent ordinary solitons, dashed 

curves – solitons with CPF. “US” indicates unstable 
branch, “S” corresponds to the stable solitons
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This prediction has been confirmed by means of more 
general  analysis  with  trial  function  (12)  having  three 
variational  parameters,  which  confirmed,  that  in  our 
problem, where there are two different spatial scales of 
oscilations  constructed  from  coefficients:  “linear” 

DP  and  “nonlinear”  BC .  The  results  of  the 
analysis are presented in Fig. 2.

Stability of all obtained solutions have been verified 
by means of computer solution of nonstationary GNSE 
(2) with the initial condition of the form of perturbed 
soliton  solution.  Extensive  series  of  simulations 
confirmed stability of the ordinary solitons and solitons 
with CPF even with respect to significan perturbations.

4. EXACT SOLUTION OF GNSE WITH 
CUBIC-QUINTIC AND NONLOCAL 

NONLINEARITY
It  is  remarkable,  that  for  whistlers  with frequency 

ω=ωc/2  the  second-order  dispersive  term  vanishes 
(coefficient  D is equal to zero). Therefore, the fourth-
order  dispersive  term  is  crucial  in  this  case.  If  such 
whistler wave beam propagates in CQ nonlinear media 
with nonlocal nonlinearity a novel soliton-like solution 
of Eq. (1), the so-called algebraic soliton, exists if

2422 ||||||)|(|ˆ Ψ∆+Ψ+Ψ=Ψ ⊥CKBN ), 2ˆ
⊥∆= PD

and  P>0,  B<0,  K>0,  C<0.  In  contrast  with  common 
solitons,  which  decay  at  infinity  exponentially,  this 
algebraic  exact solution has asymptotic behavior of the 
form 2)//()( arhr →ψ .  It  can  be  straightforwardly 
verified that stationary solution (5) with radial profile 

2)/(1
)(

ar
hr

+
=ψ , (13)

is an exact solution of the GNSE if  D=0,  ,0=λ  and 
32 =PKC . In this case amplitude at the soliton center 

and characteristic soliton width are defined as follows:
KBh /||3= , ||38 BCa = .

Note,  that  algebraic  soliton  has  zero  nonlinear 
frequency  shift  and  appears  exceptionally  under 
combined influence of fourth-order dispersive term, CQ 
an nonlocal nonlinearities.
Direct numerical simulation of the evolution (along axis 
of propagation) of nonstationary GNSE with an initial 
profile of the form of algebraic soliton (13) has shown 
that  such  wave  packet  is  unstable  with  respect  to 
collapse.  Wave  packet  envelope  contracts,  amplitude 
increases monotonically with  z.  Note, that the sign of 
the coefficient C is opposite here (PC<0) in comparison 
with  the  case  considered  in  Sec.  2  and  Sec.  3.  This 
situation  corresponds  to  a  strong  focusing  effect  on 
sufficiently intense wave packet. However, the stability 
of  the  algebraic  soliton  with  respect  to  small 
perturbations and possibility of its collapse needs more 
thorough investigation. This problem will be the subject of 
our future investigation.

5. APPLICATION TO THE PROBLEM 
OF WHISTLER WAVE SELF-FOCUSING
In linear approximation whistler wave propagation along 

an  external  magnetic  field  can  be  described  by  the  set  of 

equations  for  parallel  component  of  electric  and  magnetic 
fields:
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where electric and magnetic fields are assumed to be of the 
form zikti zeyxE +− ω),(


, zikti zeyxB +− ω),(


,
and

)( 222
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are  the  components  of  dielectric  tensor  in  cold  plasma 
approximation. For a plane wave with  0=⊥k  the set (14), 
(15) gives two independent dispersion relations:

g
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though  in  the  frequency  region  of  whistler  waves 
Cepi ωωω <<  only  the  left  hand  polarized  wave  [with 

negative  sign in  the left  hand side  of  (16)]  describes  plane 
whistler wave with dispersion
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The other “wave” has  02 <zk .  Excluding  zB  from the set 
(15), (16) we obtain one partial differential equation for the 
parallel component of the electric field zE :
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One  can  verify  that  the  coefficient  before  zE⊥∆  
vanishes for ω=ωc/2. Evidently, the term proportional to 

zE2
⊥∆ , becomes of great importance at  2cωω ≈ . At 

the  same  time,  the  role  of  nonlinear  effects  also 
increases. The main nonlinear effect is connected with a 
variation of electron density, which in its turn causes a 
variation  in  refractive  index,  under  intense  wave 
propagation.  In  many  plasmas  such  as  in  Earth 
ionosphere  or  in  laboratory  plasma,  where  intense 
whistler  waves exist,  the main nonlinear  effect  is  the 
thermal effect: plasma density decreases during plasma 
heating.  As  was  shown  experimentally  [1],  density 
perturbation  δn/n in steady-state regime is proportional 
to  δT/T  =  θ with  opposite  sign:  δn/n=-γ  θ where 
coefficient  γ is  of  order  1.  In  local  approximation 
electron temperature grows with electric field intensity 
as [16]
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and  α ~ Mm  is a part of energy, which electron has 
lost (in average) during one collision. In the first order 
of nonlinearity Eq. (18) is reduced to 

( ) 2
pEE=θ . (19)

At  the  same  time  the  nonlocal  nonlinear  effect 
connected  with  thermal  conductivity  may  be  of 
importance, especially for rather thin wave beams. Then 
equation (19) takes the form [6]

( ) 2
pe EED =∆− ⊥⊥ θτθ

where ⊥D  is the thermal diffusitivity across the external 
magnetic  field,  ecee mTD τω 266.4=⊥  according  to 
[15].  In  weakly  nonlocal  limit  the  last  equation  is 
reduced to

222 )51( pe EEr ⊥∆+≈θ ,
where  re is  electron  Larmor  radius.  This  approach  is 
justified because the wave beam radius is much larger 
then re.

To restore the equation for a temporal evolution of 
the  wave  in  a  plane,  perpendicular  to  direction  of 
propagation one need to put nlti ωωω +∂∂−→ 0  into 
the  last  term  of  equation  for  zE  and  express  nlω  
through δn:

222
0 )51( pene EErnn ⊥∆+=−= δωω .

In such a way we obtain Eq. (1) with 
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For  a  problem  of  stationary  wave  self-focusing  one 
should  replace  t∂∂  by  z∂∂ .  In  dispersion  region 
under  consideration  we  have  D>0,  P>0,  B<0,  C<0. 
Cubic nonlinear term acts as defocusing for large-scale 
structures (where the fourth order dispersion term is not 
essential) but as focusing for small-scale structures. The 
action of nonlocal term is opposite. It follows form the 
viraial relation obtained in [9] for evolution of effective 
wave  packet  width.  Due  to  these  features  there  may 
coexist two stable soliton branches describing large and 
small-scale soliton shapes in perpendicular plane.  Our 
consideration  explains  experimentally  observed 
stationary  self-focusing  of  whistler  waves  in  density 
troughs in normal dispersive region (ω<ωc/2) which is 
possible only if forth order dispersion effect and higher 
order nonlinear effect (nonlocal thermal conductivity in 
the  case  under  consideration)  are  taken  into  account 
simultaneously.

In  summary,  an  existance  of  stable  self-induced 
whistler waveguides with depressed density in normal 
dispersive regime (ω<ωc/2) is  theoretically  explained. 
In  the  framework  of  the  model,  based  on  the  fourth 
order  GNSE with  cubic  and  nonlocal  nonlinearity  by 
means  of  generalized  variational  analysis  it  is 
demonstrated,  that two different soliton branches with 
the same number of quanta but different spatial scales 
coexist.  For  nonlinear  media  with  significant 
nonlocality  (σ ≥ 1)  a  novel  coherent  structure  is 

predicted – a stationary wave beam with curved wave 
front,  which  phase  changes  nonlinearly  in  the  plane 
perpendicular  to  propagation  direction.  However,  the 
intensity of this structure remains constant along wave 
beam propagation.
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