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The transition radiation of a thin modulated electron beam injected from a conducting plane into a plasma along 

an arbitrary magnetic field normal to that plane is calculated. The radiation field is formed as a result of the interfer-
ence of three waves with different wave vectors. The radiation pattern is mainly determined by one of those waves, 
depending on the parameters of the model. 

1. INTRODUCTION
One of the possible ways for interpreting the results 

of active beam-plasma experiments in the ionosphere is 
the laboratory simulation of the observed effects. The 
excitation of waves by modulated electron beams inject-
ed in space plasmas belongs to such effects (see, for ex-
ample, [1]). In the laboratory experiment [2], whistlers 
excited by a modulated electron beam injected from an 
electron gun through a metal  surface into a magneto-
plasma were observed. It was shown that in some cases 
this excitation occurs via a transition radiation mecha-
nism. The transverse length of the formation zone of the 
transition radiation was calculated in [3] for conditions 
typical of the experiment [2]. It has been shown that this 
length is considerably less than the dimensions of the 
injector. It means that the model of a radially restricted 
beam injected from a conductive plane is valid for the 
calculation of this type of radio-emission. This model 
was studied in the whistler approximation (ω<<ωc<<ωp) 
in [4]. This report presents the results of the transition 
radiation calculations obtained with the same model but 
for arbitrary parameters.

2. MODEL DESCRIPTION
A sharp metal-plasma boundary is treated. The plas-

ma is considered to be cold and the ambient magnetic 
field is directed along the z-axis. A thin modulated elec-
tron beam is injected from the metal plane parallel to the 
magnetic field, forming the current density wave:
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(where ω is the modulation frequency and v0 is the elec-
tron beam velocity).  The current density (1)  is consid-
ered  to  be  given.  The  permittivity  tensor  of  the  cold 
magnetoactive plasma has the following form:
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where ωp is the electron plasma frequency and ωc is the 

electron cyclotron frequency.
The  problem is  solved  in  two stages.  At  first  the 

transition radiation of electromagnetic waves by a radi-
ally  unbounded modulated electron beam forming the 
current density (3) 
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is examined. At the second stage, the current (1) is ex-
panded into plane partial waves  (3).  The contributions 
of the separated partial waves are added to find out the 
transition radiation of the modulated electron beam (1).

3. TRANSITION RADIATION OF THE 
PLANE CURRENT WAVE

It is convenient to use the vector-potential instead of 
the  field  components  of the emitted electromagnetic 
wave by imposing the calibration condition ϕ=0.  From 
the Maxwell's equations one can obtain the wave equa-
tion for the vector-potential corresponding to the current 
density  wave (3)  taking into account the permittivity 
tensor (2). Using the vector-potential in the form 
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one obtains the relation for the wave as :
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Hence the normalized components of the vector –poten-
tial amplitude Am (Ax,Ay,Az) can be presented as:
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where ∆=0 is the dispersion relation for eigenmodes of 
the cold magnetized plasma.

On the metal-plasma boundary the tangential com-
ponent of the electric field vanishes 0=τE


, and then 
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,



Hence it results in 
0=Σ ± , (6)

where 
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Ordinary and extraordinary electromagnetic waves 

propagating away from the metal plane should also be 
taken  into  account  besides the current wave. Conse-
quently  the boundary conditions  on  the  metal-plasma 
border can be written as:
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where the index 1 refers to the ordinary wave, the index 
2 to the extraordinary wave, and the index B to the cur-
rent wave.

The amplitudes of the electromagnetic waves excit-
ed by the radially unbounded modulated electron beam 
have the form:

( )( )[ ]

( ) 





∆−

−−−





−

−=
⊥⊥

β
β

αεε
β

1

1

2,1//
2

1,2//
2

2,1//

22
2,1//

2
2,12

2
1,2//

2,1

nnn

nnn
Az , 

β
1

// =Bn . (8)

The transformation  coefficient of the current wave 
into the electromagnetic waves, determined as the ratio 
of the denominate longitudinal component of the vector-
potential and the amplitude of the current density wave, 
is specified by the formula: 
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4. TRANSITION RADIATION OF THE THIN 
MODULATED ELECTRON BEAM 

After  expanding  the  current (1)  into  plane  partial 
waves  (3) and taking into account (9), one can obtain 
the expressions for  the radiation field components (in 
cylindrical coordinates):
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where  J0 and  J1 are the Bessel functions of the zeroth 
and the first order, respectively. Then the components of 
that field in spherical coordinates can be written as:
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where θ is the azimuthal angle, the angle between the 
magnetic field and the direction of observation. 

For the calculation of the integrals (10) the method 
of the stationary phase is applied. As a result:
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where ( ) ( )θ−ΘΘ=± jjiij nS cos ,             (13)
and where  the  values  Θj correspond to  the  stationary 
phase points. In fact  Θ is the propagation angle of the 
electromagnetic wave.

From (12)  one can see that the  radiation field is 
formed as an interference of several waves with differ-
ent wave vectors.

5. STATIONARY PHASE POINTS
To find out the stationary phase points it is necessary 

to solve the equation:
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a
 

b
Fig. 1: a - S+ versus the propagation angle of the 

electromagnetic wave for H=60G, np=1.4 1011cm-3,  
fm=50MHz, b – azimuthal angle versus the propa-
gation angle of the electromagnetic wave for the 

same parameters. Stationary phase points are indi-
cated

where n1,2 are the roots of the dispersion relation (5). 
The  equation (15)  cannot be solved analytically  and 
therefore numerical methods are used.

The  dependence S(Θ)  is shown on the Fig.1,a.  The 

extrem p1, p2 and p3 correspond to the stationary phase 
points. The point p1 has an analogue for electromagnet-
ic waves in vacuum, the points  p2 and  p3 are specific 
for magnetoactive plasma. They appear due to the sharp 
increase of  the wave number near  the angle  Θ corre-
sponding to the resonance cone.

The values of the stationary phase points versus the 
azimuthal angle for the observation point have been cal-
culated numerically. They are shown on the Fig.1,b that 
plots the angle of observation as a function of the propa-
gation angle.  Figs.2,a-b illustrate  the  influence of  the 
magnetic field H and the modulation frequency on the 
stationary phase points’ values.
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b
Fig. 2. Number of stationary points versus the mag-
netic field H (in Gauss) for np = 1.2 1011cm-3, fm=50 
МHz (a) and versus the modulation frequency ω=2π

fm (in rad/s) for Н=60G, np = 1.2 1011cm-3 (b)
A  subsequent  calculation  shows  that  the  point  p3 

corresponding to  the largest  curvature  gives  the  main 
contribution to the radio-emission. But this point does 
not exist for all possible values of the model parameters 
(see Fig.2).  In particular  it  disappears when the usual 
conditions for whistler approximation 

pc ωωω < << < . (16)
are satisfied.

6. RADIATION PATTERN FOR DIFFERENT 
PARAMETERS OF THE MODEL 



The radiation pattern (i.e. the angular dependence of 
the radial component of the Pointing vector) is shown 
on the Figs.3,a-b. Fig.3,a shows this dependence for the 
case when the conditions (16) are satisfied and the point 
p3 disappears. The shape of the radiation pattern for this 
case conforms to the results obtained in [4].

Fig.3,b is  plotted  for  parameters  corresponding  to 
the experimental conditions [2]. For this case the point 
p3 gives the main contribution to radioemission.

 

a

b
Fig.3 Angular dependence of the radial component 

of the Pointing vector (in arbitrary units): a – 
H=300G, np =3.5 1012cm-3, fm=50MHz; b – 

H=60G, np =1.2 1011cm-3, fm=100MHz
 

Fig. 4. Maximum energy flow density (in arbitrary 
units) versus the plasma density (in cm-3) for  

H=60G, fm=100MHz
The dependence of the maximum energy flow density 
versus the plasma density for that case is shown on the 
Fig.4. One can see that the increase of the plasma densi-
ty results in the decrease of the transition radiation in-
tensity.

The Fig.5 [2], shows the variation of the intensity of 
the transition radiation harmonics as a function of time, 
that is, as a function of the decreasing plasma density 
(the appearance of upper harmonics is caused by the an-
harmonicity of the modulation beam current). One can 
see that the intensity of the harmonics radiation (particu-
larly for the second and the third harmonics) increases 
(to some degree). These results qualitatively conform to 
our calculations (Fig.4).

7. CONCLUSION

The transition radiation of a thin modulated electron 
beam injected from a conducting plane into a plasma 
along an arbitrary magnetic field normal to that plane is 
calculated.  The radiation field is formed as a result of 
the interference of three waves with different wave vec-
tors. The radiation pattern is mainly determined by one 
of those waves  (it  depends on the parameters of the 
model). 

Fig. 5. a –Variation of the plasma density np (in  
cm-3) as a function of the time; amplitudes of the 
whistler waves (in arbitrary units) as function of  
time for H=60G, fm=50MHz (b), 2 fm =100MHz 

(c), 3 fm=150MHz (d)
For the case of the whistler approximation, the ob-

tained  results  coincide  with  our  previous  calculations 
[4]. The calculated dependence of the radiation intensity 
versus the plasma density qualitatively agrees with the 
experimental data [2].

In order to perform a precise comparison of the cal-
culation results and the experimental data it is necessary 
to take into account the  finite radius of  the electron 
beam, to calculate the radiation in the near-field region 
and to examine the case of the beam injection at some 
angle to the magnetic field (this case corresponds to the 
conditions of the experiment [5]).
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