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Dynamics of systems, which parameters are subject to random influences, is considered. The random affect can 

be as external, and be caused by own chaotic dynamics of system. The important features of dynamics of such 
systems are allocated: their behavior has an intermittence character; in these systems (even linear) the properties 
characteristic for a stochastic resonance can be shown; instability, which are caused by noise, practically are not 
stabilized by nonlinearities. 
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The real  physical  systems are  subject  to  effect  of 
fluctuations.  There  is  class  of  systems,  on which the 
effect  of  fluctuations  results  in  development  of 
parametrical  instability.  It  happens  when  the 
fluctuations  are  multiplicative,  i.e.  in  a  random  way 
change  parameters  of  an  investigated  oscillatory 
system. Frequently multiplicative fluctuations result in 
that,  all  moment  are  unstable.  And  the  increment  of 
each following moment is more than previous. In this 
case  process  of  instability  has  an  intermittence 
character.  It  means,  that  the  process  is  characterized 
seldom,  but  very  intensive  casual  bursts.  The 
probability  of  occurrence  of  such emissions is  small. 
The  following time intervals  of  this  burst  are  casual. 
Let's note, that this case is a seldom example of systems 
dynamics,  when  the  maximum  moments  get  the 
concrete physical contents.  Really,  in common  cases 
for the description of  physical systems it is enough to 
know a behavior  of two first moments. 

We shall formulate the most important features of 
behavior  of  systems,  instability  in  which  induced  by 
noise.

1. Dynamics  of  a  linear  system,  which  has  an 
intermittence character is similar to nonlinear dynamics. 
As  a  simplest  example  on  Fig.1  the  dependence  of 
amplitude  of  a  linear  oscillator  is  represented.  The 
frequency  is  a  subject  to  random  disturbances.  The 
equation of such oscillator is:

 ( )2 1 ( ) 0x t xω ξ+ ⋅ + ⋅ =&& , (1)

where  ( )tξ -white noise.
All  moments  of  such  oscillator  (beginning  with 

second) are unstable. The increments of each following 
are more than previous. To the equation (1) the analysis 
of  large number of plasma systems is  reduced.  From 
Fig.1 it is visible, that dynamics of such linear oscillator 
has an intermittence character. This dynamics is similar 
to dynamics generated by nonlinear processes. To the 
equation (1) the analysis of the large number of plasma 
systems  is  reduced.  All  moments  of  such  oscillator 
(since  second)  are  unstable.  Increments  of  each 
following moment it is more previous. From a Fig. 1 it 
is  visible,  that  dynamics  such  linear  oscillator  has 
alternated  character.  Such  feature  of  linear  dynamics 
should be meant, as it is similar to dynamics caused by 
nonlinear processes.
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Fig.1. Example of the intermittence of the
unstable linear oscillator

Let's  give  the  brief  proof  of  the  formulated 
statements. For definiteness we shall consider, that the 
function ξ  has the following properties: 

( ) ( ) ( ) ( )1 10, 2t t t D t tξ ξ ξ δ= ⋅ = − (2)

Here angular brackets mean statistical averaging on 
casual  ensemble  ξ .  Using  variation  technique  (look, 
for example, [1]) from the equation (1) it is possible to 
receive the following system of the  ( )1n +  ordinary 
differential  equations  for  definition  of  the  moments 
about  displacement  ( ( )x t )  and  speeds  ( y x= & ): 
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where 0...p n= . 
Let's  show  that  since  the  second  moment,  all 

moments are unstable. And increment of each following 
moment is  more than previous.  As is  known [2],  the 
behavior  of  such  system  is  characterized  by 
intermittence. This statement more easily to prove for 

unstable oscillator ( )2 0ω < .

For  the  proof  it  is  convenient  system  of  the 
equations to copy in a vector kind. For this purpose we 

shall  enter  function  p n p
pY y x −= ⋅ .  Using  this 

function, is possible to present system of the equations 
(3) as:
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where , 0,1, 2,.....p i n= ; 
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Matrix  A  at  2 0ω <  is  a  non-negative  matrix. 
Under the theorem of Perron [3] the greatest positive 
own meaning of such matrix grows at increase of any of 
elements  ,p iA  of  this  matrix.  Increase  of  fluctuation 
intensity  D ,  and  also  increase  number  n  of  the 
moments, result in increase of these elements.

For  a  case,  when 2 0ω > ,  the  roots  ( iλ ) 
characteristic  equation  of  system  (3)  can  be  easily 
determined at 0D = . In this case characteristic equation 
for moment with number n  will look like

                          ( )
1

0
n

i
i

λ λ
=

− =∏  (5)

If  fluctuation  intensity  not  equal  zero  (
0, 1D D≠ < < ),  than  characteristic  equation  (5)  we 

can to rewrite as: 

                   ( ) ( )
1

n

i
i

D Pλ λ
=

− = ⋅∏ D  (6)

where ( )P λ  -is unknown polynom.
The  solution  of  the  characteristic  equation  (6)  is 

possible to search as i iλ δ= +D , where iλ - are roots 
of the characteristic equation (5),  δ  - small deviation 
value of this roots, which arise as result the fluctuation 
appearing. The expressions for these additives are easy 
to find:
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From (3) it is possible to receive

for  р = 0:   ( ) 1n nx n y xλ δ −+ = ⋅ ⋅ (8)

for  р = 1: 
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 for  р = 2: 
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From equation (8) find 1ny x −⋅  and substitute it in 

(9):
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From (11) at n >> 1 we will receive:
( ) 2 2
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Having  substituted  (12)  in  the  equation  (10)  it  is 
possible to write down:
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From the equation (13) it is visible, that
( )22 1n Dδ ω= − ⋅ . (14)

Thus, we have shown, that addition ( δ ) to the roots 
of  the characteristic  equation (6) grows with increase 
number  of  the  correlation  moment  ( n ),  and 
consequently, increment of each following moment is 
more than previous.

2. It  is  important  that  the  casual  change  of 
parameters  can  occur  as  a  result  of  dynamic  chaos 
development.  An  example  of  such  dynamics  is  the 
charged  particle  movement  in  an  external  magnetic 
field and in a field of an external electromagnetic wave. 
As it is known [4], at enough large wave amplitude the 
movement of particles becomes chaotic. In this case the 
value of particle energy randomly varies. The energy of 
particles,  which  are  moving  in  external  constant 
magnetic field, is one of basic parameters for dynamics. 
The  casual  change  of  this  parameter  can  result  in 
development of instability with features, which we have 
described above. 

As an example we shall  consider the most  simple 
configuration,  when  the  external  flat  electromagnetic 
wave  with  components  ,y zE H  is  spread  in  a 
perpendicular  direction  to  a  vector  of  an  external 
homogeneous  constant  magnetic  field  ( 0H ).  This 
magnetic field is directed along an axis z . It is visible, 
that  the  polarization  of  a  flat  wave  is  such,  that  the 
component of a magnetic field of a wave is  complanar 
to  an  external  constant  magnetic  field.  Except  it  we 
shall  consider,  that  at  the  initial  moment  of  time the 
particles has not the component of speed directed along 
a  constant  magnetic  field  ( 0zv = ).  In  this  case 
equations  describing  dynamics  of  particles  in  such 
fields, most simple and can be written as: 
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Where  0/ HH ω≡α  –  ratio  of  wave  magnetic 
field intensity to intensity of an external magnetic field; 

222 1 γ++=γ ppx , γ⋅ω⋅=ω mceHH /0  

In  (15)  we  used  the  following  dimensionless 
variables:  /mcpp  t  kxx  →ω→τ→ ,, , 

ω= ω mceHH /  dimensionless  wave  force 
parameter. At moderate wave field strengths the more 
effective  interaction  of  a  particle  with  a  field,  as  is 
known, occurs at performance conditions for cyclotron 
resonances:  Hnω=1 ,  ...3,2,1=n  The dynamics of 
the particles in these conditions was studied in work [4]. 
There was shown, that if the intensity of a field satisfied 
to an inequality 

     HnJpHK ω< <µ′⋅⋅
γ

≡ ⊥ )(4
, (16)

where, 222
γ⊥ += ppp x ,  Hp ω⋅γ=µ ⊥ / ,  )(µnJ  

– nth-order Bessel function, ′
nJ  - derivative of Bessel 

function on argument.
If  (16)  satisfy  than  the  particles  movement  are 

limited by the isolated cyclotron resonances area on a 
phase  plane. Dynamics of particles in these conditions 
are  regular.  If  external  wave  field  intensity  is  large 
enough,  so that  HK ω> ,  than cyclotron  resonances 
are  overlapped  and  dynamics  of  particles  become 
chaotic.

Fig. 2. Dependence of a perpendicular impulse on 
time 

In  all  these  cases  dynamics  of  particles  is  well 
enough investigated. However, all received results are 
fair only for a case, when wave force parameter is small 
( 1< <H ).  If  such inequality is  not  carried out,  it  is 
possible only to tell about dynamics of a particle, that it 
will be chaotic. In details dynamics can be studied only 
by numerical methods. 

In these conditions the system of the equations (15) 
was  analyzed  numerically  at  the  following  values  of 
parameters:  5.0=ω H ;  9.0=H ;  8.1=α .  An 
example of particle impulse dynamics is represented on 
Fig.  2.  It  is  visible,  that  it  has  typical  picture  for  a 
alternation.  This  dynamic  besides  is  characterized  by 
local instability

3. The  instability  that  was  induced  by  noise  has 
features of a stochastic resonance. It can be shown, for 
example,  so.  Let  parameters  of  system  vary 
simultaneously  under  the  regular  law  and  under  noise 
law.  Let,  besides  the  period  of  regular  perturbation  is 
such,  that  parametric  instability  can  develop.  If  the 
amplitude  of  periodic  change  of  parameters  is 
insufficiently  great  for  threshold  of  instability 
achievement than  the introduction of casual modulation 
of these parameters can result in occurrence of instability. 
Thus, the energy of external casual influence can promote 
development of instability in examined system.

As  an  example  we  shall  consider  oscillator 
dynamics, which is described by the following equation

( )2 1 ( ) cos 2 0x x t A t xν ω ξ ω+ ⋅ + + + ⋅ ⋅ =  && & . (17)

In  this  equation  A  -  amplitude  of  regular 
parametrical  influence,  and  the  function  ( )tξ  
characterizes noise influence. Using this equation, it is 
easy  to  find  such  meanings  of  parameters,  at  which 
action of one regular parametrical force or the influence 
only noise force does not result in instability. However 
joint action of these two forces results in development 
of instability.

And, dynamics of this instability is characterized by 
intermittence.  The  large  level  of  noise  the  large  the 
level of intermittence. As an example in a fig. 3 the 
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Fig. 3 Change of oscillator amplitude at

simultaneous influence regular and
Noise force ( 0,01; 0,003; 0,11NA Aν = = = )

decision  of  the  equation  (16)  is  represented  at 
0,01; 0,003; 0,11NA Aν = = = .  Here  NA - 

amplitude  noise  influence: 
( ) ( )( )2 N NnT rnd A Aξ = − .  The  action  only  one 

regular parametrical forces do not result in development 
of  instability.  Really,  the  increment  of  parametrical 
instability / 4AΓ ≈  is less than attenuation. Increment 
of  instability,  which  develops  under  action  of  casual 
force also less attenuation.

It  is  necessary  note,  however,  that  can  to  be 
observed and boomerang effect, when the development 
of  parametrical  instability  caused  by  action  only  of 
regular force, is broken at addition of casual force.

4.  The  multiplicate  fluctuations  play special  role  at 
acting  on  unstable  systems.  In  this  case  they  can  by 
radical change dynamics of system. Practically always in 
these cases is realized regime with intermittence. Under 
this  condition  only  on  the  certain  time  interval  (or 
distance)  regular  dynamics  is  kept.  Outside  of  this 
interval dynamics is chaotic. The large intensity of noise, 
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the shortly this interval. It is important, that of instability, 
that induced by noise, are not stabilized by nonlinearities. 
Really,  in  this  case  nonlinear  shifting  of  frequency  is 
compensated by presence of a wide spectrum of a noise 
signal.

REFERENCE
1. V.I. Klyatskin.  The  statistical  description  of 

dynamic  systems  with  fluctuated  parameters. 
М.: "Science", 1975, 240 p.

2. S.A. Molchanov, A.A. Ruzmaikin, D.D. Sokolov  
// Successes of physical sciences, 1985, v. 145, №4. 

3. F.R. Gantmaher.  The  theory  of  matrixes. 
M.: "Science", 1988.

4. V.A. Balakirev,  V.A. Buts,  A.P. Tolstolugsky, 
Yu.A. Turkin // JETPh, 1983, v. 84, p. 1279-1289.


	PACS: 52.35.Mw
	Reference

