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The direct and inverse scattering problems are studied for one-dimensional Schrödinger equation with a poten-

tial, which is asymptotically close to distinct periodic functions on the different half-axes. It is supposed that the 
background Hill operators have two bands spectra with the coinciding half-infinite band. It is also assumed that the 
perturbation has the second moment finite. For such a class of potentials the characterization of the scattering data is 
proposed and the inverse problem is solved. 
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1. INTRODUCTION
In physics, in the area of scattering theory, the in-

verse scattering problem is the problem of determining 
the characteristics of an object (its shape, internal con-
stitution, etc.) from measurement data of radiation or 
particles scattered from the object.  

In mathematics, inverse scattering refers to the de-
termination of the solutions of a set of differential equa-
tions based on known asymptotic solutions, that is, on 
solving the S-matrix.  

One can consider the inverse scattering transform as 
the generalized Fourier transformation that is usually 
applied for solving linear problems. The value of the 
inverse scattering transform is that it essentially allows 
investigating a nonlinear problem by the methods of 
linear theory. Today, one of the most interesting appli-
cations of the inverse scattering problem is to solve ex-
actly nonlinear evolution equations that many of them 
are encountered in hydrodynamics, plasma physics, 
nonlinear optic, and solid state physics, as well as to 
establish their complete integrability.  

The direct problem is to define appropriate scatter-
ing data for the potentials in a reasonable class of poten-
tials and to study their properties; the inverse problem is 
twofold: to give sufficient conditions on candidate scat-
tering data to assure that these data are indeed the scat-
tering data of some potential and to give a method for 
constructing that potential from that scattering data. 

The inverse scattering problem for Sturm-Liouville 
operator with fast decreasing potential on the whole real 
line was studied by Kay and Moses in [1-3], Faddeev in 
[4] and other authors (see ref. [5]). It was well founded 
for the potential that has the first moment finite by 
Marchenko in [6]. In 1967, Gardner, Greene, Kruskal 
and Miura using the direct and inverse scattering prob-
lem idea, invented a method of solution for the 
Korteweg-de Vries equation, Ref. [7]. This method was 
transformed to the algebraic form by P. Lax in Ref. [8], 
and was initially applied to the nonlinear evolution 
equations: Korteweg-de Vries equation, nonlinear 
Schrödinger equation and sine-Gordon equation.  

The inverse scattering problem for the constant step-
like background on the full line were studied in [9-10], 
and its application to the Korteweg-de Vries in [11].  

The pioneer work in the inverse problem for the pe-
riodic Sturm-Liouville operator was studied by Stanke-
vich in [12]. Another way of looking to the problem 
was considered by Marchenko in Ref. [6]. 

The scattering problem on the periodic background, 
i.e. perturbation of the Hill operator was studied in [13-
14].  

Inverse scattering problem for the Sturm-Liouville 
operator whose potential tends to  at and asymp-
totically periodic at 

0 +∞
−∞ , was considered in [15]. 

The present work considers the general case when 
the potential of the one-dimensional Schrödinger opera-
tor asymptotically closes to distinct periodic functions 
on the different half-axes. The results were announced 
in [16]. 

2. SUBSTITUTION OF THE PROBLEM 
Suppose given self-adjoint Hill operators: 

2

2 ( ), ,dH p x x
dx± ±= − + ∈\  (1) 

on the real line with the periodic potentials  
( ) ( ), .p x T p x T T± ± ± ++ = ≠ −  

We also assume that the spectra of these operators have 
the following mutual location: 

( ) : ,Spec H S± ± ± += = Δ ∪\    (2) 
where 

[ ] [ ), , 0, , 0μ ν μ ν μ ν± ± ± + − − + + .Δ = = +∞ < < <\ <  
Let λ± be the points of auxiliary spectra of the op-

erators H± , such that  

( ),0 ,  , , .λ ν λ μ ν λ± ± − + +∈ ≠ +  (3) 
From now on, the signs " and are related with 

the background data on the left and right half-axis, re-
spectively.  

"− " "+

Let us now consider the one-dimensional Schröd-
inger operator 
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2

2 ( ), ,dL q x x
dx

= − + ∈\  (4) 

whose potential is asymptotically close to the distinct 
functions ( ),p x± i.e. 

[ ]lim ( ) ( ) 0,
x

q x p x±→±∞
− =  

with the following conditions: 
2

0
( ) ( ) (1 ) .q x p x x dx

±∞

±− +∫ < ∞   (5) 

Our main goal is:  
a. to give the characterization of the scattering data, 

that is the necessary and sufficient conditions for recon-
struction of the potential by scattering data,  

b. to solve the inverse scattering problem for the op-
erator  by means of Marchenko's approach in the 
special case, when the second moment of perturbation is 
finite. 

L

The next steps for investigating are: to solve the 
Cauchy problem for corresponding Korteweg-de Vries 
equation, to consider the analogous problem and study 
the analytic behavior of scattering data for more com-
plicated case when the spectra and  have a non-
empty intersection exception in the ray 

S+ S−

,+\ i.e. 
.  + −Δ Δ ≠ ∅∪

3. DIRECT SCATTERING PROBLEM 
We will introduce necessary spectral characteriza-

tions of the background operators (1). Let 
( , ),s x λ± ( , )c x λ±  be the sin and cos-type solutions for 

the equations 

( ) ( )
2

2 ( ) , ,d p x y x y x
dx

λ λ±

⎡ ⎤
− + = ∈⎢ ⎥
⎣ ⎦

^  (6) 

with the following initial conditions: 
(0, ) (0, ) 0,s c± ±′= =λ λ (0, ) (0, ) 1,c sλ λ± ±′= =  

where ( ) ( ), dy x y x
dx

, .λ λ′ = For simplicity of notation, 

we write ( ) : ( , ),s s Tλ λ± ± ±=  ( ) : ( , ).c c Tλ λ± ± ±=  By defi-
nition  ( ) 0.s λ± ± =

Let [1( ) ( ) ( )
2

u s c ]λ λ λ± ± ±′= +  be the Hill discrimi-

nants and  
2( ) ( ) 2 ( ) 1

( )
2 ( )

s c u
m

s
λ λ λ

λ
λ

± ± ±
±

±

′ − −
=

∓
  

the Weyl functions of the operators H± , where 

2 ( ) 1 0,sign u λ λ± − > → −∞ . 

The functions ( )m λ±  correspond to the Floquet-
Weyl solutions 

( , ) ( , ) ( ) ( , ),x c x m s xψ λ λ λ± ± ± ±= + λ

±

 

for the equations Eq. (1) such that  

( )2(., ) , \ .L Sψ λ λ± ±∈ ∈\ ^  

We shall consider 

( )
( )

( )
, if  is a pole of ,

1,         if  is not a pole of .    

m

m

λ λ λ λ
σ λ

λ λ
± ± ±

±
± ±

−⎧⎪= ⎨
⎪⎩

 

By (3), the functions ( )( , ) : ( , )x xψ λ ψ λ σ λ± ± ±=�  are 
holomorphic of λ  in the domains continuous 
right up to the boundaries in which connection 

\ ,S±^

u l( , ) ( , ),x xψ λ ψ λ± ±=� � where uλ  and lλ  lie symmetri-
cally on the upper and lower sides of cuts across the 
spectra uS±  and l ,S±  respectively. 

Now, we consider the equation  

( ) ( )
2

2[ ( )] ,d q x y x y x
dx

λ λ− + = ∈^,   (7) 

with the potential satisfying the conditions (5). 
The Jost functions

( ),q x
( , ),xϕ λ±  are the solutions of Eq. (7) 

such that  
[ ]lim ( , ) ( , ) 0.

x
x xϕ λ ψ λ± ±→±∞

− =  

It is shown in [11] that for all λ belongs to the spec-
tra ,S±  there exist the transformation operators as the 
Jost solutions can be represented as: 

( , )

( , ) ( , ) ( , ) , .
x

x

x K x y y dy x y

±

±∞

± ± ±= ± ±∫

ϕ λ

ψ λ ψ λ ≤ ±
  (8) 

The real-valued and continuous functions  
are the kernel of the transformation operators that sat-
isfy the following inequalities: 

( , )K x y±

2

( , ) ( ) ( ) ( ) ,
x y

K x y C x q t p t dt
±∞

± ± ±
+

≤ ± −∫   (9) 

where  are positive continuous functions and 
bounded as  Moreover, 

( )C x±

.x →±∞

( ) ( ) ( , ).dq t p t K x x
dx± ±− = ∓   (10) 

It is evident that the functions  
( )( , ) : ( , )x xϕ λ ϕ λ σ λ± ± ±=�  

are also holomorphic in \ ,S±^  continuous right up to 

the boundaries and u( , ) ( , ),x x lϕ λ ϕ λ± ±=� �  for 
respectively. u,l u,l ,Sλ ±∈

We will denote by  
( ) ( ) ( ) ( ), , , , \x x Sω λ ϕ λ ϕ λ λ S+ − += ∈^ ∪ −  

the Wronskian of the Jost solutions and consider the 
function ( ) ( ) ( ) ,W λ ω λ σ λ= where  

( ) ( ) ( ).σ λ σ λ σ λ+ −=  
One can show that the continuous spectrum of the 

operator  defined by (1)-(5) is  L
c ( ) : .Spec L S + − += = Δ Δ∪ ∪\  

The discrete spectrum of  is finite, simple and coin-
cides with the zeros of 

L
( ) ,W λ  that is: 

{ } ( )d ( ) \ , 0, 1,..., .k kSpec L S W k pλ λ= ⊂ = =\  
Put  

( ) ( )2 2 , , 1,..., .k km x dx kϕ λ±
±= =∫

\

� p   (11) 
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The functions ( , ), ( , )x xϕ λ ϕ λ+ +  and 

( , ), ( , )x xϕ λ ϕ λ− −  form fundamental systems of solu-
tions for the Eq. (7) on the sets and respec-
tively. In particular, we have  

,u lS+
, ,u lS−

,( ) ( , ) ( , ) ( ) ( , ), .u lT x x R x Sλ ϕ λ ϕ λ λ ϕ λ λ± ± ±= + ∈∓ ∓ ±   (12) 
The transmission and reflection coefficients ( )T λ±  

and ( )R λ± make up the scattering matrix and possess 
the following properties:  

Theorem1.  
I. The functions ( )T λ± and ( )R λ± are continuous on 

the sets but at the points and satisfy the 
following equalities: 

, ,u lS± , ,0,μ ν± ±

, ,( ) ( ), ( ) ( ),u l u l u l u lT T R R Sλ λ λ λ λ± ± ± ± .±= = ∈  
,( ) 1, .u lR λ λ± ±= ∈Δ  

2
2 ,

2

( ) 1 ( )
1 ( ) ( ) ,

( )( ) 1
u lu s

R T
su

λ λ
λ λ 2 .

λλ
±

± ±
±

−
− = ∈

−

∓

∓
\λ +

,( ) ( ) ( ) ( ), .u lR T R Tλ λ λ λ λ± ± ± += − ∈∓ \  

1 1( ) 1 , ( ) , .T O R Oλ λ
λ λ

± ±

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + = →∞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

λ

II. (Analyticity) ( )T± λ are extended as meromorphic 
functions in the domain with the simple poles 
at 

\ S^
1,..., pλ λ  For all \ S∈^λ the following relation 

holds

( )2 2

( ) ( ) ( ) ( ) 1:
( ) 1 ( ) 1

T s T s

u u

λ λ λ λ
ω λλ λ

+ + − −

+ −

= =
− −

, 

in which connection the function ( ) ( )( )W λ ω λ σ λ= is 
an analytic function in  continuous right up to the 
boundaries and  

\ ,S^

( )
2

2( ) ,k k k
dW m m

d
λ λ λ
λ

−+ −⎡ ⎤= =⎢ ⎥⎣ ⎦
 

where are defined by (11).  km±

III. At the edges of the spectrum  the elements of 
scattering matrix satisfy the following conditions:  

,S

[ ] [ ]

2
, ,0

0

( ) 1
lim ( ) 1 0, (0) 0,

( )
( ) 1 ( ) 1

lim 1,     (0) 0.
( ) ( )

R
u

T
R R

T T

λ μ ν

λ

λ
λ

λ
λ λ

ω
λ λ

± ±

±
±

→ ±

+ −

→ + −

+
− =

+ +
=

ω ≠

=

 

Using these properties, we derive the fundamental 
integral equations that are called the Gel’fand-Levitan-
Marchenko equations. 

4. INVERSE SCATTERING PROBLEM 

Theorem 2. The kernels of the transforma-
tion operators satisfy the following integral equations: 

( , )K x y±

( , ) ( , ) ( , ) ( , ) , ,
x

K x y F x y K x t F t y dt x y
±∞

± ± ± ±+ ± + ± ≤∫ ±

d

(13) 

where 
( , )

( ) ( , ) ( , ) ( )
u lS S

F x y

R x yλ ψ λ ψ λ ρ λ
± ±

±

± ± ± ±

=

∫
∪

λ

2( )
( , ) ( , ) ( )

( )u

T
x y d

λ
ψ λ ψ λ ρ λ λ

σ λ ± ±
±Δ

+ ∫
∓

∓
∓� �  

2( , ) ( , ) ( ) ,
k

k k kx y m
λ
ψ λ ψ λ ± −
± ±+∑ � �  

2

( )
( )

4 ( )

i s

u

λ
ρ λ

π λ
±

±

±

=
1−

.   (14) 

The conditions (5) and theorem 1 imply the esti-
mates for the functions ( , )F x y± and their derivatives at 
infinity, analogous the estimates obtained in [14, (7.3)-
(7.9), (7.16)-(7.17)] in which  

( )2( , ) 1 ( ), ,
a

d F x x x dx C a a
dx

±∞

± + ≤ ∈∫ \   (15) 

is the most important ones. The properties of scattering 
data described in the theorem 1 and mentioned in [14], 
are their characterization which are sufficient conditions 
for solving the inverse scattering problem in the class 
(1)-(5). For each scattering matrix with such properties, 
the one-dimensional Schrödinger operator is recon-
structed uniquely with the potential belongs to the class 

(5). Namely, let 
2

2 ( )dH p x
dx± = − + ± be two Hill opera-

tors with the spectra S± and auxiliary spectra λ± , satis-
fying the conditions (2)-(3). Let 

( ) ( ) ( ), , , ,u s x xλ λ ψ λ± ± ± be their Hill discriminants, 
sin-type solutions and Weyl solutions of the equations 
Eq. (6). Consider any arbitrary set of points 

( )1,..., \p S Sλ λ + −∈^ ∪ and positive real numbers 

1 ,..., pm m± ± . We define the functions ( ), ( )R Tλ λ± ± on 

the domains  and suppose that all collection ,u,lS±

{ }1 1( ), ( ), ( ), ( ), ,..., , ,...,p pR R T T m m± ±
+ − + −λ λ λ λ λ λ   (16) 

possesses the properties, which are described in the 
conditions I and II of the theorem 1. Then the functions 

( , )F x y±  constructed by formulas (14), are well defined 
and have real-valued for all x and . We assume the 
data (16) are such as the functions 

 y
( , )F x y± satisfy the 

inequalities mentioned in [14].  
Lemma 1. If the scattering data satisfies the condi-

tions I and II of the theorem 1 and the estimates (15) 
then the integral equations (13) have the unique solu-
tions  which are real-valued and continuously 
differentiable functions with respect to both variables. 
Moreover, they satisfy the same type of estimates as for 

( , )K x y±

( , ).F x y±  
We solve the Gel’fand-Levitan-Marchenko equa-

tions with regard to and put ( , )K x y±
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( ) ( , ) ( ).dq x K x x p x
dx± ±= +∓ ±  (17) 

their Applications. Kiev: “Naukova dumka”, 1977, 
331 p. (in Russian).  

7. C.S. Gardner, J.M. Greene, M.D. Kruskal, 
R.M. Miura. Method for solving the Korteweg-
de Vries equation //Phys. Rev. Lett. 1967, N19, p. 
1095-1097. 

Applying lemma 1 and the inequalities (15) de-
scribed for  we conclude that  ( , )K x y±

( )2( ) ( ) 1 .
a

q x p x x dx
±∞

± ±− +∫ < ∞   
8. P.D. Lax. Integrals of nonlinear equations of evolu-

tion and solitary waves //Comm. Pure Appl. Math. 
1968, v. 21, N5, p. 467-490. Furthermore, the functions ( , )x yϕ± constructed by 
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problem for one-dimentional Schrödinger equation 
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N17, p. 56-64 (in Russian). 

2

2 ( ) ( ) ( )d q x y x y x
dx

λ±

⎡ ⎤
− + =⎢ ⎥
⎣ ⎦

 

with the potentials (17). 10. A. Cohen, T. Kappeler. Scattering and inverse scat-
tering for steplike potentials in the Schrödinger 
equation //Indiana Univ. Math. Journal. 1985, v. 34, 
N1, p.127-180.  

Lemma 2. If the condition III of the theorem 1 holds  
too, then the potentials  and coincide. ( )q x+ ( )q x−

Therefore, it would hold the following theorem that 
is the main result. 11. E.Ya. Khruslov. Asymptotics of the solution of the 

Cauchy problem for the Korteweg-de Vries equation 
with initial data of step like type //Math. USSR 
Sbornik. 1976, v. 28, p. 229-248 (in Russian). 

Main Theorem. The data (16) possessing the prop-
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of the formulas (10). 
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ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧИ РАССЕЯНИЯ НА ВСЕЙ ОСИ ДЛЯ ОДНОМЕРНОГО 
УРАВНЕНИЯ ШРЁДИНГЕРА 

Дж. Базарган 
Изучаются прямая и обратная задачи рассеяния для одномерного уравнения Шрёдингера с потенциалом, 

который асимптотически близок к различным периодическим функциям на разных полуосях. Предполагает-
ся, что фоновые операторы Хилла имеют двухзонные спектры с общей полубесконечной зоной. Также 
предполагается, что возмущение имеет второй суммируемый момент. Для такого класса потенциалов 
предлагаются полные характеристики данных рассеяния и решается обратная задача рассеяния. 

 
ПРЯМА ТА ЗВОРОТНЯ ЗАДАЧА РОЗСІЮВАННЯ НА УСІЙ ОСІ ДЛЯ  

ОДНОВИМІРНОГО РІВНЯННЯ ШРЬОДІНГЕРА 
Дж. Базарган 

Вивчається пряма та зворотна задача розсіювання для одновимірного рівняння Шрьодінгера з потенціа-
лом, який асимптотично наближений до різноманітних періодичних функцій на різних напівосях. Припуска-
ється, що фонові оператори Хілла мають двухзонні спектри зі спільною напівнескінченною зоною. Також 
припускається, що збудження має другий момент, що підсумовується. Для такого класу потенціалів пропо-
нуються повні характеристики даних розсіювання і розв`язується зворотна задача розсіювання. 
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