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The direct and inverse scattering problems are studied for one-dimensional Schrodinger equation with a poten-
tial, which is asymptotically close to distinct periodic functions on the different half-axes. It is supposed that the
background Hill operators have two bands spectra with the coinciding half-infinite band. It is also assumed that the
perturbation has the second moment finite. For such a class of potentials the characterization of the scattering data is

proposed and the inverse problem is solved.
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1. INTRODUCTION

In physics, in the area of scattering theory, the in-
verse scattering problem is the problem of determining
the characteristics of an object (its shape, internal con-
stitution, etc.) from measurement data of radiation or
particles scattered from the object.

In mathematics, inverse scattering refers to the de-
termination of the solutions of a set of differential equa-
tions based on known asymptotic solutions, that is, on
solving the S-matrix.

One can consider the inverse scattering transform as
the generalized Fourier transformation that is usually
applied for solving linear problems. The value of the
inverse scattering transform is that it essentially allows
investigating a nonlinear problem by the methods of
linear theory. Today, one of the most interesting appli-
cations of the inverse scattering problem is to solve ex-
actly nonlinear evolution equations that many of them
are encountered in hydrodynamics, plasma physics,
nonlinear optic, and solid state physics, as well as to
establish their complete integrability.

The direct problem is to define appropriate scatter-
ing data for the potentials in a reasonable class of poten-
tials and to study their properties; the inverse problem is
twofold: to give sufficient conditions on candidate scat-
tering data to assure that these data are indeed the scat-
tering data of some potential and to give a method for
constructing that potential from that scattering data.

The inverse scattering problem for Sturm-Liouville
operator with fast decreasing potential on the whole real
line was studied by Kay and Moses in [1-3], Faddeev in
[4] and other authors (see ref. [5]). It was well founded
for the potential that has the first moment finite by
Marchenko in [6]. In 1967, Gardner, Greene, Kruskal
and Miura using the direct and inverse scattering prob-
lem idea, invented a method of solution for the
Korteweg-de Vries equation, Ref. [7]. This method was
transformed to the algebraic form by P. Lax in Ref. [8],
and was initially applied to the nonlinear evolution
equations: Korteweg-de Vries equation, nonlinear
Schrodinger equation and sine-Gordon equation.
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The inverse scattering problem for the constant step-
like background on the full line were studied in [9-10],
and its application to the Korteweg-de Vries in [11].

The pioneer work in the inverse problem for the pe-
riodic Sturm-Liouville operator was studied by Stanke-
vich in [12]. Another way of looking to the problem
was considered by Marchenko in Ref. [6].

The scattering problem on the periodic background,
i.e. perturbation of the Hill operator was studied in [13-
14].

Inverse scattering problem for the Sturm-Liouville
operator whose potential tends to 0 at +oo and asymp-
totically periodic at —oo , was considered in [15].

The present work considers the general case when
the potential of the one-dimensional Schrédinger opera-
tor asymptotically closes to distinct periodic functions
on the different half-axes. The results were announced
in [16].

2. SUBSTITUTION OF THE PROBLEM

Suppose given self-adjoint Hill operators:
2

d
H, :—y+ p,(xX), xeR, )

on the real line with the periodic potentials
pi(X+Tt) = pt(x)b T+ =T

We also assume that the spectra of these operators have
the following mutual location:

ec(H,)=S =4, UR., @
where
A, :[,ui,vi], R, :[O,+oo), Ho<v <u <v, <0.

Let A, be the points of auxiliary spectra of the op-
erators H, , such that

A €(v.,0), A= p,,v, A, 3)

From now on, the signs "—"and "+"are related with
the background data on the left and right half-axis, re-
spectively.

Let us now consider the one-dimensional Schrod-
inger operator
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2
L:—d—2+q(x), XxeR, 4)
dx
whose potential is asymptotically close to the distinct
functions p, (X), i.e.

lim [q(0) - p.(x)] =0,

with the following conditions:
| 1771600 p.0o] (1) o

Our main goal is:

a. to give the characterization of the scattering data,
that is the necessary and sufficient conditions for recon-
struction of the potential by scattering data,

b. to solve the inverse scattering problem for the op-

<0, &)

erator L by means of Marchenko's approach in the
special case, when the second moment of perturbation is
finite.

The next steps for investigating are: to solve the
Cauchy problem for corresponding Korteweg-de Vries
equation, to consider the analogous problem and study
the analytic behavior of scattering data for more com-
plicated case when the spectra S_and S have a non-

empty intersection exception in the ray R ,i.e.
A UA_=O.

3. DIRECT SCATTERING PROBLEM

We will introduce necessary spectral characteriza-
tions of the background operators (1). Let
S, (X,4), . (X,4) be the sin and cos-type solutions for

the equations

{—%+ p+(x)} y(x)=2y(x), 2€C, (6)

with the following initial conditions:
5.(0,4)=¢l(0,4)=0, ¢,(0,4) =s.(0,4) =1,

where y'(X,4)= di y(X,4). For simplicity of notation,
X
we write s,(2):=5,(T,,A), ¢,(A):=c,(T,,A). By defi-
nition S, (4,)=0.
Let u,(2) = %[s; (2)+¢,(A)] be the Hill discrimi-

nants and

SH(A)—C (A F2Ju () -1
m,(2) = =——— :
: 25.(2)
the Weyl functions of the operators H, , where

sign {Ju,’(1)-1>0, 2 —-o0.

The functions m, (1) correspond to the Floquet-

Weyl solutions
w. (% A) =€, (X A) + M. (1)s, (X, 1),
for the equations Eq. (1) such that
v.(,A)el’(R,), 1eC\S,.

We shall consider
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+

A=A, if A, isapole of m (1),
(/1)_{1, if 2, is not a pole of m, ().

By (3), the functions 7, (X, 1) =y, (X,4)o, (/1) are
holomorphic of A in the domains C\S,, continuous
right up to the boundaries in which connection
7. (% A") =, (x,A"), where A" and A' lie symmetri-
cally on the upper and lower sides of cuts across the
spectra S," and S,', respectively.

Now, we consider the equation

[—§7+q(x)] y(x)=2y(x), 4eC, (7)

with the potential Q(X), satisfying the conditions (5).
The Jost functions ¢, (X,A), are the solutions of Eq. (7)
such that

lim [, (. 2) =, (% A)] = 0.

It is shown in [11] that for all 4 belongs to the spec-
tra S,, there exist the transformation operators as the
Jost solutions can be represented as:

?. (%)

_ F ®)

=y () [ K (VY. (%, A)dy, £X<y.

The real-valued and continuous functions K, (X,Y)

are the kernel of the transformation operators that sat-
isfy the following inequalities:

K.(xy)|<2C.0 [ Ja®) - p.(b) dt, ©)

xty
2

where C,(X) are positive continuous functions and
bounded as X — +oo. Moreover,

)~ PO =F-5 K. (%)
X

It is evident that the functions
P, (X% A) =@, (%), (1)
are also holomorphic in C\'S,, continuous right up to

9.(xA") =P, (x4,  for

(10)

the boundaries and

A e S, respectively.
We will denote by
o(1)=(p.(x4).0_(x4)), 1eC\(S.US)
the Wronskian of the Jost solutions and consider the
function W(4)=w(4)o(A), where
o(A)=0,(A)o_(2).
One can show that the continuous spectrum of the
operator L defined by (1)-(5) is
Spec (L)=S:=A, UA_UR,.
The discrete spectrum of L is finite, simple and coin-
cides with the zeros of W(/I), that is:

Soec, (L) = {xlk} cR\S, W(ﬂk) =0, k=1,...,p.
Put

(mf)z :_[gbf (%A )d%, k=1,...,p.

R
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The functions o, (X, 4), m and
o_(X,A), m form fundamental systems of solu-
tions for the Eq. (7) on the sets S and S"', respec-
tively. In particular, we have
T.(D9, (%) = . (% )+ R (D, (xA), 1€S". (12)

The transmission and reflection coefficients T (1)
and R, (4)make up the scattering matrix and possess
the following properties:

Theoreml.

I. The functions T, (1) and R, (1) are continuous on
the sets S, but at the points x,,v,,0, and satisfy the

following equalities:

T,AH=T.(4), RUYH=R), 2% st
R(A)|=1, 1eAl.

YU (D=1 s.(2)
Ju2(y-1 A
R(A) T.(A)=-R (4) T.(A), AeR".

T.(A) = 1+O{LJ, R.(A)= O[L} || = .

1-[R(MP =

JA A
IL. (Analyticity) T, (1) are extended as meromorphic
functionsin the domain C\ S with the simple poles
at 4,,...,4, Forall 1eC\Sthefollowing relation

holds
TWs W _THsAH) _ 1
Jul)-1 Jurly-1 e(2)’
in which connection the function W(4) =w(4)o(4)is

an analytic function in C\'S, continuous right up to the
boundaries and

dw(2) L)
[ dA M:ﬂk} =(mim )
where n; are defined by (11).
II1. At the edges of the spectrum S, the elements of
scattering matrix satisfy the following conditions:

lim  ul(1)-1 RM+1_ 0, (0)=0,
A=y ,ve 0 T, (A)
[R.(A)+1] [R.(2)+1] L w00
A0 T.(A) T_(A)

Using these properties, we derive the fundamental
integral equations that are called the Gel’fand-Levitan-
Marchenko equations.

4. INVERSE SCATTERING PROBLEM

Theorem 2. The kernels K, (x, y) of the transforma-
tion operators satisfy the following integral equations:

T, 2eRY

K, (% y)+F, (X y)iT K,(xt)+F,(t,y) dt, £x<zty,(13)
where
Fi(xa Y) =
[ R ya(x2) ya(y,2) pi(4) dA
U

L2
1

+ I |T¢ (/1)|2
o:(4)

V(0 A) F(Y.A) py(d) dA
A

F (% A) T (Y, A) (M) 72,
A
is.(4)

(A)=——
o 4z Ju2(A)-1

The conditions (5) and theorem 1 imply the esti-
mates for the functions F, (X, y) and their derivatives at

(14)

infinity, analogous the estimates obtained in [14, (7.3)-
(7.9), (7.16)-(7.17)] in which
T d 2
M& F. (X,X) (1+|x| ) dx

<C(a), aeR, (15)

is the most important ones. The properties of scattering
data described in the theorem 1 and mentioned in [14],
are their characterization which are sufficient conditions
for solving the inverse scattering problem in the class
(1)-(5). For each scattering matrix with such properties,
the one-dimensional Schrodinger operator is recon-

structed uniquely with the potential belongs to the class
2

(5). Namely, let H, = —%+ p, (X) be two Hill opera-
X

tors with the spectra S, and auxiliary spectra A, , satis-
fying the conditions 2)-(3). Let
u,(4),s.(xA4),w, (x,A)be their Hill discriminants,
sin-type solutions and Weyl solutions of the equations
Eq. (6). Consider any arbitrary set of points
Asendy € C\(S_US )and  positive real numbers

"

m’,..., M, . We define the functions R, (4),T,(4)on

the domains S

o

{R.(AD),R(A), T,(A),T.(2), Aises Aps mi,...,rrr;} (16)

possesses the properties, which are described in the
conditions I and II of the theorem 1. Then the functions
F.(X,y) constructed by formulas (14), are well defined

and suppose that all collection

and have real-valued for all Xand y. We assume the
data (16) are such as the functions F,(X,Y) satisfy the
inequalities mentioned in [14].

Lemma 1. If the scattering data satisfies the condi-
tions | and Il of the theorem 1 and the estimates (15)
then the integral equations (13) have the unique solu-
tions K, (x,y) which are real-valued and continuously
differentiable functions with respect to both variables.
Moreover, they satisfy the same type of estimates as for
F.(X%Y).

We solve the Gel’fand-Levitan-Marchenko equa-
tions with regard to K, (X, y) and put
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(17

Applying lemma 1 and the inequalities (15) de-
scribed for K, (X,y) we conclude that

+o0

]

a

Furthermore, the functions ¢, (X, Yy) constructed by

q.(%) = ;di K. (% %)+ p..(X).
X

6,00 p.00] (1+]X")dx <o

formulas (8) become the Jost solutions for the equations

d2
[—FJF qi(X)} y(X) = 2y(X)
X
with the potentials (17).
Lemma 2. If the condition 111 of the theorem 1 holds
too, then the potentials g, (x) and g_(x) coincide.

Therefore, it would hold the following theorem that
is the main result.

Main Theorem. The data (16) possessing the prop-
erties mentioned in the theorem 1 and satisfying the
estimates as (15) becomes the scattering data for (1)-(5)
with the potential q(x) :=q, (X) = q_(x), defined by one
of the formulas (10).
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MPSIMASI U OBPATHAS 3AJIAYU PACCESIHUS HA BCE OCH J1JI1 OTHOMEPHOI'O
YPABHEHUSA IIPEIUHTEPA

Joe. bazapzan

W3zyugaroTes npsiMast 1 oOpaTHas 3aaud paccesiHUs Ul OAHOMEpHOro ypaBHeHus LlpéauHrepa ¢ moTeHIMANOM,
KOTOPBIA aCUMIITOTHYECKH OJIN30K K Pa3NINYHbIM IepHOINIeCKUM (QyHKIMAM Ha pa3HbIX Hosyocsx. [Ipeanomnaraer-
csi, 4To (OHOBBIE ONepaTopbl XWIa MUMEIOT JIBYX30HHBIE CHEKTPHI ¢ oOmied mnomyOeckoHeYHO# 30HOH. Taroke
TIpeAIoaraercsi, 4YTo BO3MYIIEHHE HMMEET BTOPOH CyMMHpyeMBbIi MOMEHT. /Iyl Takoro Kiiacca IHOTEHIHAIOB
NpeIIararoTCst NOJIHBIC XapaKTePUCTHKY TaHHBIX pacCessHHs M pelaeTcs oOpaTHas 3aJa4a pacCessHHs.

MPSIMA TA 3BOPOTHS 3AJJAYA PO3CIFOBAHHS HA YCIA OCI JIJIs1
OJHOBHUMIPHOI'O PIBHSIHHS INPBOJAIHI'EPA

Jowe. bazapzan

BuBuaeTbes mpsiMa Ta 3BOPOTHA 3a7ada PO3CiIOBaHHS A OQHOBUMipHOTO piBHAHHSA llIprominrepa 3 moreHIia-
JIOM, SIKMH aCUMIITOTHYHO HAOIMKEHUH 10 PI3HOMAaHITHUX NepioanyHuX (YHKIIH Ha pi3HUX HamiBocsx. [Ipumycka-
€TbCs1, 110 (OHOBI oneparopu Xijla MalOTh JBYX30HHI CIIEKTPHU 31 CIUIBHOIO HAIliBHECKIHYEHHOIO 30HOI0. Takox
MPUITYCKAEThCS, 10 30YIKEHHS Ma€e NPYTUil MOMEHT, IO MiICYMOBY€EThCs. [ TaKOro Kiacy MOTEHIiaNiB Mporo-
HYIOTBCSI TIOBHI XapaKTePUCTUKU JaHUX PO3CIFOBAHHS 1 PO3B SI3YETHCS 3BOPOTHA 33]]a9a PO3CIFOBAHHS.
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