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We use the so-called geometrical approach [1] in description of transition from regular motion to chaotic one in
Hamiltonian systems with potential energy surface that has several local minima. Distinctive feature of such systems
is coexistence of different types of dynamics (regular or chaotic) in different wells at the same energy [2]. Applica-
tion of traditional criteria for transition to chaos (resonance overlap criterion, negative curvature criterion and sto-
chastic layer destruction criterion) is inefficient in case of potentials with complex topology. Geometrical approach
allows considering only configuration space but not phase space when investigating the stability. In this approach all
information about chaos and regularity is contained in potential function. The aim of this work is to determine what
details of geometry of potential lead to chaos in Hamiltonian systems using geometrical approach. Numerical calcu-

lations are executed for potentials that are relevant with lowest umbilical catastrophes.

PACS: 01.30.Cc, 45.50.-j, 05.45.-a.

1. MIXED STATE. PHENOMENOLOGICAL
DESCRIPTION

Hamiltonian system with multi-well potential energy
surface (PES) represents a realistic model, describing
the dynamics of transition between different equilibrium
states, including such important cases as chemical reac-
tions, nuclear fission and phase transitions.

It became known in 80-th that existence of mixed
state is an important feature of such systems [2]. Mixed
state means that there are different dynamical regimes in
different local minima at the same energy, either regu-
lar, or chaotic. For example let’s demonstrate the exis-
tence of mixed state for nuclear quadrupole oscillations
Hamiltonian.

It can be shown that using only transformation prop-
erties of the interaction the deformation potential of
surface quadrupole oscillations of nuclei takes on the
form [4]:

U(aO’aZ): z Cmn(a(% +2a%)md(,)1(6a% _a(%)n ) (1)

m,n

where a, and a, are internal coordinates of the nuclar
surface during the quadrupole oscillations:
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Constants C,,,, can be considered as phenomenol-

ogical parameters. Restricting with the terms of the
fourth degree in the deformation and assuming the
equality of mass parameters for two independent direc-
tions, we get C;,-symmetric Hamiltonian:

H=(p:+p3)/2m+Upp(x,yia,b,c), 3)

where
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Ugo(x,y;a,b,c)
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X = \/Eaz,y =dap,a = 2C10,b = 3C01,C = Czo.

Hamiltonian (3) and corresponding equations of mo-
tion depend only on parameter W=>b’/ac, the unique
dimensionless quantity we can build from parameters
a,b,c. The same parameter determines the geometry of
PES. Interval 0<W<16 includes potentials with single
extremum — minimum in the origin that corresponds to
spherical symmetric shape of the nucleus. In the interval
W>16 PES U, contains seven extrema: four minima

(central, placed in the origin and three peripheral, which
correspond to deformed states of nuclei) and three sad-
dles, which separate peripheral minima from central
one. The distinctive feature of transition from regularity
to chaos in such a potential lies in the fact that energy of
transition is not the same in different local minima.
Thus, E,., ~ E/2 (E; — energy in the saddles) for the cen-
tral minimum and E.~E; for peripheral. Due to this in
the interval E/2<E<E; classical dynamics is mainly
chaotic in the central minimum and remains regular in
peripheral minima (Fig. 1). Term “mixed state” is used
for designation of such specific dynamics.

Mixed state is natural for multi-well potentials. This
statement is illustrated by Fig.1, which represents level
lines and Poincaré sections in different energies for
multi-well potentials from family of umbilical catastro-
phes Ds and D:

Up =x/§y2 +§x2 +xy2 —lx4 +lx6,
7 8 2 6 (5)

2 4

1
Up =2y2—x +xy2+Zx .

One can see that there exists chaos in wells with
three saddles, while in other wells motion is regular.
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Fig. 1. Level lines and Poincaré sections for Dj (left), D, (center) and U, (right). Sections are presented at

energies E_[4,E |2 andE,

Let’s note the distinction of sections structure in dif-
ferent wells. At the lowest energy there exists a hyper-
bolic point in the section for wells with chaotic motion.
At the same time there is no such a point in the regular
wells and structure of sections is similar at the different
energies.
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2. IMPORTANCE OF THE MIXED STATE
FOR QUANTUM CHAOS

The mixed state represents optimal object for inves-
tigation of quantum manifestations of classical stochas-
ticity (QMCS) in wave function structure. Indeed, usual
procedure of search for QMCS in wave functions im-
plies distinction in its structure below and above classi-



cal critical energy (or other parameters of regularity-
chaos transition). However, such procedure meets diffi-
culties connected with necessity to separate QMCS
from modifications of wave functions structure due to
trivial changes of its quantum numbers. Wave functions
of the mixed state allow finding QMCS in comparison
not different eigenfunctions, but different parts of the
same eigenfunction, situated in different regions of con-
figuration space (different local minima of the poten-
tial).

3 ‘!I.I. e e o T
Fig. 2. Wave function structure in Dy potential

For example, comparing the structure of the eigen-
functions in central and peripheral minima of the QO
potential or in left and right minima of the Ds, it is evi-
dent that nodal structure of the regular and chaotic parts
is clearly different, but correlating with the character of
the classical motion (see Fig. 2).

3. STOCHASTIC CRITERIA
FOR THE MIXED STATE

As is well known [5], stochasticity is understood as
a rise of statistical properties in purely deterministic
system due to local instability. According to this idea
values of parameters of dynamical system, under which
local instability arises, are identified as regularity-chaos
transition values. However, stochasticity criteria of such
a type are not sufficient (their necessity offers a separate
and complicated question), since loss of stability could
lead to transformation of one kind of regular motion to
another one. Regardless this serious limitation, stochas-
tic criteria in combination with numerical experiments
facilitate the analysis of motion and essentially extend
efficiency of numerical calculations.

The first among widely used stochasticity criteria is
nonlinear resonances overlap criterion presented by
Chirikov [6]. According to this criterion rise of local
instability is generated by contact of separatrices of
neighboring nonlinear resonances. In this approach the
scenario of stochasticity is the following. The averaged
motion of the system in the neighborhood of the isolated
nonlinear resonance on the plane of the action-angle
variables is similar to the particle behavior in the poten-
tial well. Several resonances correspond to several po-
tential wells. The overlap of the resonances is responsi-
ble for the possibility of the random walk of particle

between these wells. This method could be modified for
the systems with unique resonance [7]. In this case the
origin of the large-scale stochasticity is connected with
the destruction of the stochastic layer near the separatrix
of the isolated resonance.

Application of these criteria in presence of strong
nonlinearity (which is inevitable when considering
multi-well potentials) encounters an obstacle: action-
angle variables effectively work only in neighborhood
of local minimum. Because of this, the interest to meth-
ods, based on direct estimation of trajectories diver-
gence speed, arises. The criterion of such a type is so-
called negative curvature criterion (NCC) [8]. This cri-
terion connects stochastisation of motion with getting to
part of configuration space, where Gaussian curvature
of PES is negative when energy increases (while in
neighborhood of minima curvature is always positive).
Then energy of transition to chaos is close to minimal
energy on the zero-curvature line. However, when pass-
ing on to the multi-well potentials, NCC fails to work
correct. In particular, for above mentioned potentials
(Ds and Dy), structure of Gaussian curvature is similar
in different wells. For example, for D; potential accord-
ing to NCC we get the same value of critical energy for
both minima: -5/9, but chaotic motion is observed only
in the left well (see Fig. 1). A natural question immedi-
ately arises: is it possible to formulate, using only geo-
metrical properties of PES but not solving numerically
equations of motion, the algorithm for finding the criti-
cal energy for single local minima in multi-well poten-
tial? We’ll try to answer this question below in the
framework of geometrical approach.

4. GEOMETRICAL APPROACH
TO HAMILTONIAN MECHANICS

We will use so-called geometrical approach in con-
sideration of mixed state [1]. Let’s recall the basics of
this method.

It is known that Hamiltonian dynamics could be
formulated in the terms of Riemannian geometry. In this
approach trajectories of the system are considered as
geodesics of some manifold. Grounds for such consid-
eration lie in variational base of Hamiltonian mechanics.

Geodesics are determined by condition:

ajds:o. (6)
L

At the same time trajectories of dynamical system are
determined according to the Maupertuis principle:

sj 2Tdt =0 (7
Y

(v are all isoenergetic paths connecting end points) or to
the Hamilton’s principle:

1)
5[ Ldt=0. ®)
|

Once chosen a suitable metric action could be re-
wrote as a length of the curve on the manifold. Then
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trajectories will be geodesics on this manifold. This
approach has an evident advantage: potential energy
function includes all information about the system, so
one needs to consider only configuration space but not
phase space.

Equations of motion in this case take on the form:

dzqi4_rz dg’ dg*
ds? ds ds

©)

Christoffel symbols in this approach play role of coun-
terparts of forces in ordinary mechanics.

The most natural metric is the Jacobi one. It has the
form:

g = AE -V ()16 (10)
By means of this metric Maupertuis principle could be
rewritten in the form equivalent to condition for ge-
odesics.

Let’s consider local instability in the framework of
above mentioned geometrical approach. Let ¢ and ¢ be
two trajectories, close at 1=0:

q"(5)=4" (s)+J'(s). (11)

Separation vector then satisfy the Jacobi-Levi-Civita
equation:
24 j I
d~J + l-k[dLJkdiz 0.
ds? I ds ds
It can be shown that dynamics of the deviation is de-
termined only by Riemannian curvature of the manifold.

For two-degrees-of-freedom systems Riemannian curva-
ture has the form:

(12)

R= [2(E-V)AV +2|VV[]. (13)

HE-V)?

Laplacian of V is positive for considered potentials
so Riemannian curvature is positive too. Due to this we
couldn’t connect divergence of trajectories with nega-
tive Riemannian curvature.

One way to solve this problem consists in introduc-
tion of higher-dimensional (than N) metrics. Let’s
examine this question closer.

It can be shown that equation for separation vector J
could be reformulated in the form, which doesn’t de-
pend on dimensionality of manifold:

ldH T
2

A S R

where K{ 7 is a sectional curvature in two-dimensional
direction:

Jdg* Tt dg™

K@ (J, %)= WXWW

Ritim (15)

and <j ,§> =0.

Note that the point where K”<0 is unstable. Since
there are more than one sectional curvature for the case
N>2, we could connect instability with negative sign of
some of them.
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One of the enlarged metrics is the Eisenhart metric.
Eisenhart metric is N+2-dimentional and contains two
additional coordinates. One of these coordinates coin-
cides with time and second is connected with action.
Using Eisenhart metric, quantity K could be rewritten
in the form:

. 1 o et oty e’
K®(@G,4) = S0+ —5a
2E-V) ogf 0q5 (16)
82[/ [ ] [ ]
-2
oog, 119

Now, investigation the K””-structure on the consid-
ered manifold could be used for studying the chaotic
regimes and, in particular, the mixed state.

Let’s briefly summarize the basics of geometrical
approach to Hamiltonian mechanics:

dynamics ~ geometry

t (time) ~ s (arc-length)

V (potential energy) ~ g (metric)

oV (forces) ~ I" (Christoffel symbols)

&*V, (8V)* (curvature of potential) ~
R (curvature of potential)

5. INVESTIGATION OF THE MIXED STATE
IN THE FRAMEWORK OF GEOMETRICAL
APPROACH

As mentioned above, negative sign of K” is a condi-
tion for rise of local instability. It is necessary to clarify
whether this condition is sufficient for development of
chaoticity or not, clearly speaking, one needs to answer
the question: does the presence of negative curvature
parts on CM always lead to chaos? Potentials with
mixed state represent a very convenient model for
investigation of this question, since there exist both re-
gimes of motion.

So, we need to study, how differs the structure of
K7 in different wells. For that we calculate the fraction
of phase space with negative curvature as a function of
energy, i.e. a volume of phase space where K@ <0 re-
ferred to the total volume:

[dgdpe(-KP)5(H (G, p) - E)
[ dddp3(H (G, p)— E)

W(E) = (17)

An advantage of this approach consists in necessity to
calculate only geometrical properties of system without
solving equations of motion.

We carried out calculations for two potentials: Ds
and D,.

Calculations of p (Fig. 3) show that there are re-
gions, where K” <0, in all wells, but nevertheless chaos
exists only in one well. Moreover, for the well with
chaotic motion function p(E) gives correct value of
critical energy (in the sense, specified in part 3). At this
energy U becomes positive.
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Fig. 3. Function W(E) for D, (a) and D, (b) poten-

tials. Data for chaotic wells are represented by circles,
for regular — by triangles
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Fig.4. Function p, (E) for Dy (a) and D, (b)

Situation with regular wells is more complicated.
Although the fraction of phase space, where K@ <0, is

nonzero, chaos in the well doesn’t exist. This can be
seen on the Poincaré sections. For comparison the frac-
tion of CS with negative Gaussian curvature is shown in
Fig. 4. One can see that structure of negative Gaussian
curvature is similar to the K”-structure. To understand
this similarity let’s introduce polar coordinates in space
of momenta. K”” then becomes:

- v . oy
k®(g,0)= a—2<sm<p>2 +8—2(cos<p)2
2y
-2

cosQ sing,
09104

where ¢ is the polar angle. Evidently k¥ could be
negative only if Gaussian curvature is negative.

6. CONCLUSIONS

Investigation of curvature of manifold, as one can
see from the cited above data, doesn’t give a plain
method for identification of chaos in any minimum,
especially if there exist both regular and chaotic regimes
of motion. It is impossible to determine a priori whether
chaos exists in the system without using the dynamical
description (in our case that are Poincaré sections).
Nevertheless, one can efficiently use geometrical meth-
ods for investigation of chaos in multi-well potentials.

In above considered potentials chaos exists only in
wells, which have two details: non-zero fraction of
negative curvature on the manifold and at least one hy-
perbolic point in the Poincaré section. According to this,
one can use the following method for identification of
chaos and calculation of critical energy. At the first step
the Poincaré section in low energy is drown for the well
and the presence of hyperbolic point is determined. If
so, the quantity p must be calculated (or the fraction of
CS with negative Gaussian curvature). Value of energy,
in which p becomes positive, could be associated with
critical energy. If there is no hyperbolic point in the
section than chaos doesn’t exist in the well.

Consequently, geometrical methods could be effi-
ciently used for determination of critical energy in com-
plicated potentials and identification of chaos in general.
However, one must carefully use these methods and
combine them with qualitative methods, such as Poinca-
ré sectioning method.
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TEOMETPUYECKHU MOJXO0/1 K OIMUCAHUIO CMEILIAHHOT'O COCTOSITHUSA
B MHOT'OSMHBIX IIOTEHIINAJIAX

B.II. Bepezoson, 10.J1. boromun, I . U. Heawkeeuu

MBI uCTIONB3yeM TaK Ha3bIBAEMbIH F€OMETPUUECKUH 1moaxox [1] B omucaHny nepexona OT peryJsipHOTO JABHXKe-
HUSL K XaOTHYECKOMY B T'aMHJIBTOHOBBIX CHCTEMax, B KOTOPHIX ITOBEPXHOCTh NMOTEHIHAIBHON YHEPTUU MMEET He-
CKOJIPKO JIOKQJIbHBIX MUHUMYMOB. OTIHYHTENbHAs YepTa TaKUX CHUCTEM — COCYIIECTBOBAHUE PA3IMYHBIX THUIIOB
JUHAMUKHU (PETyJISApHOTO WM XaOTHYECKOr0) B pa3HBIX MOTEHIMAJIBHBIX SMaxX IPHU TOH xke camoil 3Hepruu [2].
[IpumeHeHne TpagULMOHHBIX KPUTEPHEB Ul MEPeXosa K Xaocy (KpUTepHH NMEpeKphITUS Pe30HAHCOB, KPUTEPUI
OTpHULIATEILHON KPUBU3HBI M KPUTEPHH paspyLICHUs] CTOXaCTHYECKOTO Cllos) Hed(p(PEeKTHBHO B Cllydyae IIOTEHIMAIOB
C KOMIUIEKCHOH Tononorueil. ['eomerpuueckuil moaxo Npu UCCIEJOBAHUN YCTOMYMBOCTH MO3BOJSIET paccMaTpH-
BaTh TOJBKO MPOCTPAHCTBO KOH(purypanmii, Ho He (azoBoe mpocTpaHcTBO. B 3TOM moaxone Best nH(poOpManus oT-
HOCHUTEJBHO Xa0ca M PEryJIIPHOCTH COJEPKUTCS B MOTeHIMAIbHON (yHKumu. Llens HacTosmiel paboThl COCTOUT B
TOM, YTOOBI, HCTIOJIB3YsI TEOMETPHUECKHI MOIXO0I, ONPEEIUTh KaKHe IeTalIN T€OMETPHUH MOTCHIIHAIa IPUBOIST K
Xa0cy B TaMWJIBTOHOBBIX cHcTeMaX. UNCIICHHBIE PacuyeThl BBIIOIHEHBI U1l HOTEHIAI0B, KOTOPBIE COOTBETCTBYIOT
CaMbIM HU3KUM OMOMIMYECKUM KaTtacTpodam.

TEOMETPUYHUM HIAXII 10 OIUCY 3MIIIAHOI'O CTAHY Y BATATOSIMHUX HOTEHIJAJIAX
B.II1. Bepezosuii, 10.J1. bonomin, I'.1. Ieauwkesuu

Mpu BUKOPHCTOBYEMO TaK 3BaHHH T€OMETPHUUHUH miaxia [1] B omuci mepexomy Bi perysipHOTO pyxy A0 XaOTH-
YHOTO B FaMiJIbTOHOBHUX CHCTEMAaX, Y SIKMX ITOBEPXHs MOTEHIIHHOI eHeprii Mae KilbKa JIOKaNbHUX MiHiMyMiB. Bin-
MiTHA pUca TaKUX CHUCTEM — CIBICHYBaHHS Pi3HUX TUIIB AMHAMIKHU (peryisapHOro abo XaOTHYHOT0) Yy Pi3HHUX IMOTe-
HIIWHKUX sSMax NpU Tii ke camiil eHeprii [2]. 3acTocyBaHHs TpaJUIIIHHIX KPUTEPIiB [UIs MEpexoy 110 xaocy (Kpu-
Tepiil HEePEeKPUTTSI PE30HAHCIB, KPUTEPil HEraTHMBHOI KPUBM3HU W KpHUTEPiil pylHYBaHHSI CTOXaCTHYHOIrO IIapy) He-
e()CKTHBHO Yy BHUIIAJKy MOTCHINAIB i3 KOMIUICKCHOIO TOMOJIOTi€r0. [ cOMETpUYHMHN IMiIXi] PH JOCTIKCHHI cTa0i-
JIBHOCTI JI03BOJISIE PO3IJISIIATH TUIBKH MPOCTip KOHQIrypariit, ane He (azoBuii mpocTip. Y 1pboMy miaxoni Best iHpo-
pMallist 010 XaoCy W PeryJsipHOCTI MICTUThCS B MOTEHLIHHIM QyHKuii. L{ine nanoi poboTtu mossirae B Tomy, oo,
BHKOPHUCTOBYIOUH TEOMETPUIHUHN MiAXiA, BU3HAYUTH SIKi I€Talli TeOMETpil MOTEHIIaTy MPUBOAATH IO XaoCy B TaMi-
JBTOHOBUX cHcTeMax. UmcenbHI pO3paXyHKH BUKOHAHI IS MOTEHIIIANIB, SKi BiNOBIMAIOTh HAWHIDKYMM OMOLTIY-
HUM KaTacTpodam.
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