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We use the so-called geometrical approach [1] in description of transition from regular motion to chaotic one in 
Hamiltonian systems with potential energy surface that has several local minima. Distinctive feature of such systems 
is coexistence of different types of dynamics (regular or chaotic) in different wells at the same energy [2]. Applica-
tion of traditional criteria for transition to chaos (resonance overlap criterion, negative curvature criterion and sto-
chastic layer destruction criterion) is inefficient in case of potentials with complex topology. Geometrical approach 
allows considering only configuration space but not phase space when investigating the stability. In this approach all 
information about chaos and regularity is contained in potential function. The aim of this work is to determine what 
details of geometry of potential lead to chaos in Hamiltonian systems using geometrical approach. Numerical calcu-
lations are executed for potentials that are relevant with lowest umbilical catastrophes. 

PACS: 01.30.Cc, 45.50.-j, 05.45.-a. 
 

1. MIXED STATE. PHENOMENOLOGICAL 
DESCRIPTION 

Hamiltonian system with multi-well potential energy 
surface (PES) represents a realistic model, describing 
the dynamics of transition between different equilibrium 
states, including such important cases as chemical reac-
tions, nuclear fission and phase transitions. 

It became known in 80-th that existence of mixed 
state is an important feature of such systems [2]. Mixed 
state means that there are different dynamical regimes in 
different local minima at the same energy, either regu-
lar, or chaotic. For example let’s demonstrate the exis-
tence of mixed state for nuclear quadrupole oscillations 
Hamiltonian. 

It can be shown that using only transformation prop-
erties of the interaction the deformation potential of 
surface quadrupole oscillations of nuclei takes on the 
form [4]: 
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where a0 and a2 are internal coordinates of the nuclar 
surface during the quadrupole oscillations: 

0 0 2,0

2 2,2 2, 2

( , ) {1 ( , )

[ ( , ) ( , )]}.

R R a Y

a Y Y

θ ϕ θ ϕ

θ ϕ θ ϕ−

= +

+ +
 (2) 

Constants  can be considered as phenomenol-
ogical parameters. Restricting with the terms of the 
fourth degree in the deformation and assuming the 
equality of mass parameters for two independent direc-
tions, we get C

mnC

3v-symmetric Hamiltonian: 
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Hamiltonian (3) and corresponding equations of mo-
tion depend only on parameter W=b2/ac, the unique 
dimensionless quantity we can build from parameters 
a,b,c. The same parameter determines the geometry of 
PES. Interval 0<W≤16 includes potentials with single 
extremum – minimum in the origin that corresponds to 
spherical symmetric shape of the nucleus. In the interval 
W>16 PES U  contains seven extrema: four minima 
(central, placed in the origin and three peripheral, which 
correspond to deformed states of nuclei) and three sad-
dles, which separate peripheral minima from central 
one. The distinctive feature of transition from regularity 
to chaos in such a potential lies in the fact that energy of 
transition is not the same in different local minima. 
Thus, E

QO

cr ~ Es/2 (Es – energy in the saddles) for the cen-
tral minimum and Ecr~Es for peripheral. Due to this in 
the interval Es/2<E<Es classical dynamics is mainly 
chaotic in the central minimum and remains regular in 
peripheral minima (Fig. 1). Term “mixed state” is used 
for designation of such specific dynamics. 

Mixed state is natural for multi-well potentials. This 
statement is illustrated by Fig.1, which represents level 
lines and Poincaré sections in different energies for 
multi-well potentials from family of umbilical catastro-
phes D5 and D7: 
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One can see that there exists chaos in wells with 
three saddles, while in other wells motion is regular. 
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Fig. 1. Level lines and Poincaré sections for (left), (center) and U (right). Sections are presented at  
energies 

5D 7D QO

4sE , 2sE and sE  
 
 
Let’s note the distinction of sections structure in dif-

ferent wells. At the lowest energy there exists a hyper-
bolic point in the section for wells with chaotic motion. 
At the same time there is no such a point in the regular 
wells and structure of sections is similar at the different 
energies. 

2. IMPORTANCE OF THE MIXED STATE 
FOR QUANTUM CHAOS 

The mixed state represents optimal object for inves-
tigation of quantum manifestations of classical stochas-
ticity (QMCS) in wave function structure. Indeed, usual 
procedure of search for QMCS in wave functions im-
plies distinction in its structure below and above classi-
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cal critical energy (or other parameters of regularity-
chaos transition). However, such procedure meets diffi-
culties connected with necessity to separate QMCS 
from modifications of wave functions structure due to 
trivial changes of its quantum numbers. Wave functions 
of the mixed state allow finding QMCS in comparison 
not different eigenfunctions, but different parts of the 
same eigenfunction, situated in different regions of con-
figuration space (different local minima of the poten-
tial). 

 
Fig. 2. Wave function structure in  potential 5D
For example, comparing the structure of the eigen-

functions in central and peripheral minima of the QO 
potential or in left and right minima of the D5, it is evi-
dent that nodal structure of the regular and chaotic parts 
is clearly different, but correlating with the character of 
the classical motion (see Fig. 2). 

3. STOCHASTIC CRITERIA  
FOR THE MIXED STATE 

As is well known [5], stochasticity is understood as 
a rise of statistical properties in purely deterministic 
system due to local instability. According to this idea 
values of parameters of dynamical system, under which 
local instability arises, are identified as regularity-chaos 
transition values. However, stochasticity criteria of such 
a type are not sufficient (their necessity offers a separate 
and complicated question), since loss of stability could 
lead to transformation of one kind of regular motion to 
another one. Regardless this serious limitation, stochas-
tic criteria in combination with numerical experiments 
facilitate the analysis of motion and essentially extend 
efficiency of numerical calculations. 

The first among widely used stochasticity criteria is 
nonlinear resonances overlap criterion presented by 
Chirikov [6]. According to this criterion rise of local 
instability is generated by contact of separatrices of 
neighboring nonlinear resonances. In this approach the 
scenario of stochasticity is the following. The averaged 
motion of the system in the neighborhood of the isolated 
nonlinear resonance on the plane of the action-angle 
variables is similar to the particle behavior in the poten-
tial well. Several resonances correspond to several po-
tential wells. The overlap of the resonances is responsi-
ble for the possibility of the random walk of particle 

between these wells. This method could be modified for 
the systems with unique resonance [7]. In this case the 
origin of the large-scale stochasticity is connected with 
the destruction of the stochastic layer near the separatrix 
of the isolated resonance. 

Application of these criteria in presence of strong 
nonlinearity (which is inevitable when considering 
multi-well potentials) encounters an obstacle: action-
angle variables effectively work only in neighborhood 
of local minimum. Because of this, the interest to meth-
ods, based on direct estimation of trajectories diver-
gence speed, arises. The criterion of such a type is so-
called negative curvature criterion (NCC) [8]. This cri-
terion connects stochastisation of motion with getting to 
part of configuration space, where Gaussian curvature 
of PES is negative when energy increases (while in 
neighborhood of minima curvature is always positive). 
Then energy of transition to chaos is close to minimal 
energy on the zero-curvature line. However, when pass-
ing on to the multi-well potentials, NCC fails to work 
correct. In particular, for above mentioned potentials 
(D5 and D7), structure of Gaussian curvature is similar 
in different wells. For example, for D5 potential accord-
ing to NCC we get the same value of critical energy for 
both minima: -5/9, but chaotic motion is observed only 
in the left well (see Fig. 1). A natural question immedi-
ately arises: is it possible to formulate, using only geo-
metrical properties of PES but not solving numerically 
equations of motion, the algorithm for finding the criti-
cal energy for single local minima in multi-well poten-
tial? We’ll try to answer this question below in the 
framework of geometrical approach. 
 

4. GEOMETRICAL APPROACH  
TO HAMILTONIAN MECHANICS 

We will use so-called geometrical approach in con-
sideration of mixed state [1]. Let’s recall the basics of 
this method. 

It is known that Hamiltonian dynamics could be 
formulated in the terms of Riemannian geometry. In this 
approach trajectories of the system are considered as 
geodesics of some manifold. Grounds for such consid-
eration lie in variational base of Hamiltonian mechanics. 

Geodesics are determined by condition: 

0
L

dsδ =∫ . (6) 

At the same time trajectories of dynamical system are 
determined according to the Maupertuis principle: 

2Tdt
γ

δ =∫ 0  (7) 

(γ  are all isoenergetic paths connecting end points) or to 
the Hamilton’s principle: 
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Once chosen a suitable metric action could be re-
wrote as a length of the curve on the manifold. Then 
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trajectories will be geodesics on this manifold. This 
approach has an evident advantage: potential energy 
function includes all information about the system, so 
one needs to consider only configuration space but not 
phase space. 

Equations of motion in this case take on the form: 
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Christoffel symbols in this approach play role of coun-
terparts of forces in ordinary mechanics. 

The most natural metric is the Jacobi one. It has the 
form: 

2[ ( )]ij ijg E V q= − δ . (10) 

By means of this metric Maupertuis principle could be 
rewritten in the form equivalent to condition for ge-
odesics. 

Let’s consider local instability in the framework of 
above mentioned geometrical approach. Let q and q` be 
two trajectories, close at t=0: 

' ( ) ( ) (i i iq s q s J s= + ) . (11) 

Separation vector then satisfy the Jacobi-Levi-Civita 
equation: 
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It can be shown that dynamics of the deviation is de-
termined only by Riemannian curvature of the manifold. 
For two-degrees-of-freedom systems Riemannian curva-
ture has the form: 
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Laplacian of V is positive for considered potentials 
so Riemannian curvature is positive too. Due to this we 
couldn’t connect divergence of trajectories with nega-
tive Riemannian curvature. 

One way to solve this problem consists in introduc-
tion of higher-dimensional (than N) metrics. Let’s 
examine this question closer

It can be shown that equation for separation vector J 
could be reformulated in the form, which doesn’t de-
pend on dimensionality of manifold: 
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where K(2) is a sectional curvature in two-dimensional 
direction: 
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Note that the point where K(2)<0 is unstable. Since 
there are more than one sectional curvature for the case 
N>2, we could connect instability with negative sign of 
some of them. 

One of the enlarged metrics is the Eisenhart metric. 
Eisenhart metric is N+2-dimentional and contains two 
additional coordinates. One of these coordinates coin-
cides with time and second is connected with action. 
Using Eisenhart metric, quantity K(2) could be rewritten 
in the form: 
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Now, investigation the K(2)-structure on the consid-
ered manifold could be used for studying the chaotic 
regimes and, in particular, the mixed state. 

Let’s briefly summarize the basics of geometrical 
approach to Hamiltonian mechanics: 

dynamics ~  geometry 
t (time) ~   s (arc-length) 
V (potential energy) ~  g (metric) 
∂V (forces) ~   Γ (Christoffel symbols) 
∂2V, (∂V)2 (curvature of potential) ~   
   R (curvature of potential) 

5. INVESTIGATION OF THE MIXED STATE 
IN THE FRAMEWORK OF GEOMETRICAL 

APPROACH 
As mentioned above, negative sign of K(2) is a condi-

tion for rise of local instability. It is necessary to clarify 
whether this condition is sufficient for development of 
chaoticity or not, clearly speaking, one needs to answer 
the question: does the presence of negative curvature 
parts on CM always lead to chaos? Potentials with 
mixed state represent a very convenient model for 
investigation of this question, since there exist both re-
gimes of motion. 

So, we need to study, how differs the structure of 
K(2) in different wells. For that we calculate the fraction 
of phase space with negative curvature as a function of 
energy, i.e. a volume of phase space where K(2) <0 re-
ferred to the total volume: 
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An advantage of this approach consists in necessity to 
calculate only geometrical properties of system without 
solving equations of motion. 

We carried out calculations for two potentials: D5 
and D7. 

Calculations of µ (Fig. 3) show that there are re-
gions, where K(2) <0, in all wells, but nevertheless chaos 
exists only in one well. Moreover, for the well with 
chaotic motion function µ(E) gives correct value of 
critical energy (in the sense, specified in part 3). At this 
energy µ becomes positive. 
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Fig. 3. Function µ(E) for (a) and (b) poten-
tials. Data for chaotic wells are represented by circles, 
for regular – by triangles 

5D 7D

 

 
Fig.4. Function µg (E) for (a) and (b) 5D 7D

Situation with regular wells is more complicated. 
Although the fraction of phase space, where K(2) <0, is 

nonzero, chaos in the well doesn’t exist. This can be 
seen on the Poincaré sections. For comparison the frac-
tion of CS with negative Gaussian curvature is shown in 
Fig. 4. One can see that structure of negative Gaussian 
curvature is similar to the K(2)-structure. To understand 
this similarity let’s introduce polar coordinates in space 
of momenta. K(2)  then becomes: 
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where  is the polar angle. Evidently Kϕ (2)  could be 
negative only if Gaussian curvature is negative. 

6. CONCLUSIONS 
 Investigation of curvature of manifold, as one can 

see from the cited above data, doesn’t give a plain 
method for identification of chaos in any minimum, 
especially if there exist both regular and chaotic regimes 
of motion. It is impossible to determine a priori whether 
chaos exists in the system without using the dynamical 
description (in our case that are Poincaré sections). 
Nevertheless, one can efficiently use geometrical meth-
ods for investigation of chaos in multi-well potentials. 

In above considered potentials chaos exists only in 
wells, which have two details: non-zero fraction of 
negative curvature on the manifold and at least one hy-
perbolic point in the Poincaré section. According to this, 
one can use the following method for identification of 
chaos and calculation of critical energy. At the first step 
the Poincaré section in low energy is drown for the well 
and the presence of hyperbolic point is determined. If 
so, the quantity µ must be calculated (or the fraction of 
CS with negative Gaussian curvature). Value of energy, 
in which µ becomes positive, could be associated with 
critical energy. If there is no hyperbolic point in the 
section than chaos doesn’t exist in the well. 

Consequently, geometrical methods could be effi-
ciently used for determination of critical energy in com-
plicated potentials and identification of chaos in general. 
However, one must carefully use these methods and 
combine them with qualitative methods, such as Poinca-
ré sectioning method. 
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ГЕОМЕТРИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ СМЕШАННОГО СОСТОЯНИЯ  
В МНОГОЯМНЫХ ПОТЕНЦИАЛАХ 

В.П. Березовой, Ю.Л. Болотин, Г.И. Ивашкевич 

Мы используем так называемый геометрический подход [1] в описании перехода от регулярного движе-
ния к хаотическому в гамильтоновых системах, в которых поверхность потенциальной энергии имеет не-
сколько локальных минимумов. Отличительная черта таких систем – сосуществование различных типов 
динамики (регулярного или хаотического) в разных потенциальных ямах при той же самой энергии [2]. 
Применение традиционных критериев для перехода к хаосу (критерий перекрытия резонансов, критерий 
отрицательнoй кривизны и критерий разрушения стохастического слоя) неэффективно в случае потенциалов 
с комплексной топологией. Геометрический подход при исследовании устойчивости позволяет рассматри-
вать только пространство конфигураций, но не фазовое пространство. В этом подходе вся информация от-
носительно хаоса и регулярности содержится в потенциальной функции. Цель настоящей работы состоит в 
том, чтобы, используя геометрический подход, определить какие детали геометрии потенциала приводят к 
хаосу в гамильтоновых системах. Численные расчеты выполнены для потенциалов, которые соответствуют 
самым низким омбилическим катастрофам. 

 
 

ГЕОМЕТРИЧНИЙ ПІДХІД ДО ОПИСУ ЗМІШАНОГО СТАНУ У БАГАТОЯМНИХ ПОТЕНЦІАЛАХ 

В.П. Березовий, Ю.Л. Болотін, Г.І. Івашкевич 

Ми використовуємо так званий геометричний підхід [1] в описі переходу від регулярного руху до хаоти-
чного в гамільтонових системах, у яких поверхня потенційної енергії має кілька локальних мінімумів. Від-
мітна риса таких систем – співіснування різних типів динаміки (регулярного або хаотичного) у різних поте-
нційних ямах при тій же самій енергії [2]. Застосування традиційних критеріїв для переходу до хаосу (кри-
терій перекриття резонансів, критерій негативної кривизни й критерій руйнування стохастичного шару) не-
ефективно у випадку потенціалів із комплексною топологією. Геометричний підхід при дослідженні стабі-
льності дозволяє розглядати тільки простір конфігурацій, але не фазовий простір. У цьому підході вся інфо-
рмація щодо хаосу й регулярності міститься в потенційній функції. Ціль даної роботи полягає в тому, щоб, 
використовуючи геометричний підхід, визначити які деталі геометрії потенціалу приводять до хаосу в гамі-
льтонових системах. Чисельні розрахунки виконані для потенціалів, які відповідають найнижчим омбіліч-
ним катастрофам. 
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