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The present paper is devoted to discussion of origins of the modern paradigm of deterministic chaos: the transi-

tion from the older philosophy understanding chaos as a result of uncontrolled external effects to the theory based 
on internal mechanism of the chaos appearance in nonlinear systems. The report briefly presents the main steps of 
research in framework of new approach. Success of the new approach is demonstrated on two important dynamical 
systems – billiards and atomic nuclei. 
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Currently one can consider as a rigorously estab-

lished fact an existence of such dynamical systems with 
a small number of degrees of freedom ( ) for 
which under certain conditions classical motion could 
not be distinguished from random one [1,2]. Typical 
features of these systems are nonlinearity and absence 
of any external source of randomness. Thus, using such 
synonyms for the term “random” as “chaotic”, “stochas-
tic”, “irregular”, one can state that there are nonlinear 
deterministic systems, for which these notions express 
adequately internal fundamental properties that com-
promise and represent an important and interesting sub-
ject for investigation. Examples of chaotic motion for 
the last 30-40 years have been detected in every field of 
natural sciences. 
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What are mechanisms of generation of chaos in rig-
orous deterministic systems? To answer this question let 
us consider perhaps the most important example of dy-
namical laws, Newton laws.  Newton's laws are deter-
ministic because for any system the same initial condi-
tions will always produce identically the same outcome. 
Term “the same initial conditions” requires more pre-
cise definition. One of the fundamental physics princi-
ples is that no real measurement is infinitely precise: 
uncertainty which is present in any real measurement 
arises from the fact that any imaginable measuring de-
vice — even if designed and used perfectly — can re-
cord its measurement only with a finite precision. This 
uncertainty can never be eliminated completely, even as 
a theoretical idea. The presence of uncertainty in any 
real measurement means that the initial conditions can-
not be specified to infinite accuracy. The uncertainty 
present in the initial conditions of a system yields a cor-
responding uncertainty in the range of the prediction for 
any later time. It should be particularly emphasized that 
the uncertainty in the dynamical outcome does not arise 
from any randomness in the equations of motion — 
since they are completely deterministic — but rather 
from the lack of the infinite accuracy in the initial con-
ditions. 

Throughout most of the modern history of physics, 
it has been assumed that it is possible to shrink the 

uncertainty in the final dynamical prediction by measur-
ing the initial conditions to greater and greater accuracy. 
However, this procedure loses every sense for the sys-
tem, possessing property of dynamical instability. Dy-
namical instability refers to a special kind of behavior 
of dynamical systems which was discovered around the 
year 1900 by H. Poincaré. He noticed that certain astro-
nomical systems did not seem to obey the rule that 
shrinking the initial conditions always shrank the final 
prediction in a corresponding way.  For these types of 
systems, Poincaré showed that a very tiny imprecision 
in the initial conditions would grow in time at an enor-
mous rate. Thus two nearly-indistinguishable sets of 
initial conditions for the same system would result in 
two final predictions which differed vastly from each 
other. In other words, Poincaré proved for these systems 
the only way to obtain predictions with any degree of 
accuracy lies in the fact that to entail the initial condi-
tions to absolutely infinite precision. But it is impossi-
ble. The extreme sensitivity to initial conditions re-
ceived the name dynamical instability, or simply chaos. 

Many decades would pass before the dynamical 
chaos ideology was realized by the science community 
as a whole. According to the old ideology:  

• Chaos is an attribute of the compound system. 
• In any compound system it is possible to find 

out the elements of chaos. 
• The useful information is contained in those 

few places in which chaos is absent. 
• Physicist must look for nonchaos. 

New ideology in principle changed the situation: 
• Chaos is a universal inalienable property of the 

simple deterministic systems. 
• Chaotic dynamics is most general way of evo-

lution of arbitrary nonlinear system 
• New interesting information is contained ex-

actly in those regions of natural sciences, 
where chaos is present. 

• Chaos is the major object of study. 
• Physicist must look for chaos! 
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The Newtonian model is often depicted as a billiard 
game, in which the outcome unfolds mathematically 
from the initial conditions in predetermined fashion, 
like a movie that can be run forwards or backwards in 
time. The billiard game is a useful analogy, because on 
the microscopic level, the motion of molecules can be 
compared to the collisions of the balls on the billiard 
table, with the same dynamical laws invoked in both 
cases. 

Billiards conception is of great importance in phys-
ics. A lot of physical processes are described in billiard 
terms. Billiards also play an important part in the form-
ing of statistical physics basic ideas. So let us pay de-
tailed attention at this conception. From the physical 
point of view, billiard conception, as a matter of fact, 
has dual nature or origin. This duality is very deep and 
is connected with two most important physical objects 
— particle and wave. Really, according to one concep-
tion, billiard can be regarded as a region limited by a 
boundary. Inside the region, the particle moves freely 
and is elastically reflected from the boundary. In this 
conception boundary coincides with singular potential 
energy, the potential barrier of which is situated on the 
billiard boundary. The other conception is based on 
beams spreading in the region with reflection from the 
boundaries; according to the law, falling angle equals to 
reflection angle. At first sight, both conceptions look 
like absolutely equal. The dual nature of the billiards, 
described above, is reflected in the approaches to bil-
liard dynamics description and, in particular, in case of 
phase space introduction. 

In case of regarding the billiard as a particle inside a 
singular barrier, the traditional idea of billiard condition 
arises. For example, the particle state is defined by its 
position  and momentum . Now let us discuss phase 
space, which naturally follows from beams conception. 
The beam state, which uniquely defines its evolution, is, 
in its turn, defined by the beam’s segment with the di-
rection indicated. In case of boundary parameterization 
by the parameter 0 , the coordinates of segment 
are  — where  is the beginning of the seg-
ment on the boundary, and  is segment’s second end 
coordinate on the billiard boundary. Let us notice that 
both coordinates are equal by their geometric meaning. 
This important and deep difference is apparent in the 
structure of phase space. Such approach to billiards is 
proposed in the works [3–5]. In a way, these approaches 
correlate as Hamiltonian and Lagrangean formalisms in 
classic mechanics. 
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In the geometric approach some problems look more 
natural. For example, it is there where universal type of 
billiard reflections with interesting features appears [4], 
a close connection with projective geometry is found 
[3], new characteristics appear, such as invariant billiard 
boundary attendance distribution function [5], which 
satisfies the non-linear analogue of Frobenius–Perron 
equation. In such approach, an important progress in 
theory of normal forms in billiard periodic orbits [7], as 
well as in topological billiards classification is achieved. 
Besides, other criteria types of chaos arising in billiards 
appear [6]. When developing this approach, an interest-

ing class of chaotic billiards, different from Sinai bil-
liards [8] and Bunimovich ones [9] was found — poly-
morphous billiards [10]. Such billiards can prove useful 
models for studying strongly deformed states of com-
pact drops. One can mention new spectrometric uni-
formities of light-gathering in scintillation detectors as 
an important example of physical application for bil-
liard, theoretically found and experimentally proved 
[11]. 

Another example of billiards, genetically connected 
with wave conception, can be composite billiard [12]. 
Among the examples of systems leading to such billiard 
type, we can mention scintillation detector, consisting 
of two materials with different refraction coefficients. 
Such a physical system, naturally, leads to a generalized 
billiard model, in which two new elements appear. They 
are beams “multiplication” at reflection and refraction 
of a beam on the media boundary and the law of beams 
refraction, which is complementary to the mirror reflec-
tion law. Both these elements are connected with the 
appearance of transparent media boundaries, ordinary 
billiard boundaries preserved. So, by composite billiard 
we shall mean the billiard inside which there are trans-
parent boundaries of media. 

Such billiards have comparatively complicated 
phase spaces and dynamics, compared to ordinary bil-
liards. In chaotization mechanisms in them, proceeding 
from the effective boundary conception, different from 
ordinary billiards chaotization variants are admitted 
[12]. In a sense, in such billiards even a different type of 
deterministic chaos arises, connected not with exponen-
tial sensitivity to initial condition, but with the appear-
ance of deterministically chaotic beams laws of motion. 

Conception of dynamic chaos is universal and may 
be realized on all spatial scales, from cosmological to 
subnuclear. By reason of the richness of experimental 
data and sufficient precision of the theory, the nuclear 
dynamics provides useful realistic model for studying 
classical chaos and quantum manifestations of the clas-
sical stochasticity.  

Conception of chaos has been introduced in the nu-
clear theory within the last twenty years. This concep-
tion brought birth to the new notion in the nuclear struc-
ture, nuclear reactions, could resolve a sequence of the 
very old contradictions in the nuclear theory. A radi-
cally new universal approach to the problem of statisti-
cal properties of the energy spectra was developed on 
the basis of the general nonlinear theory of dynamical 
systems. Considerable advances have been made in the 
area of concrete nuclear effects. Finally, straightforward 
observations of the chaotic regimes in the course of 
simulations of the heavy-ions reactions verify in favor 
of the general considerations. 

In our researches of collective nuclear dynamics de-
scription of surface quadruple oscillations held a central 
position [13]. This investigations include a complete 
description of classical dynamics generated by the Ham-
iltonian of quadruple oscillations along with identifica-
tions of those peculiarities of quantum dynamics which 
can be interpreted as quantum manifestations of classi-
cal stochasticity. We have pointed up an intimate 
connection between dynamical features and geometry of 
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the potential energy surface. Interpretation of negative 
curvature of the potential energy surface as the source 
of the local instability allows to correctly predict the 
critical energy of the transition to chaos for one-well 
potentials. 

Particular attention has been given to the investiga-
tion of classical dynamics in the parameter region corre-
sponding to the potentials with a few local minima. 
Researches of these potentials would be treated as one 
of the indispensable steps on the way to transition from 
description of the model systems to direct consideration 
of much more realistic systems. 

As was shown, one of the main peculiarities of the 
many-well Hamiltonians is the existence of the mixed 
state: realization of diverse dynamical regimes (regular 
or chaotic) at one and the same energy in different local 
minima [14]. We proposed a new approach to investiga-
tion of quantum manifestations of classical stochasticity 
in wave functions structure, which can be realized in 
potentials with two and more local minima [15]. The 
main advantage of the proposed approach is the possi-
bility to detect quantum manifestations of classical sto-
chasticity in comparison not different wave functions, 
but different parts of the same wave function. Effi-
ciency of the approach is demonstrated for two poten-
tials: surface quadruple oscillations and lower umbilic 
catastrophe  [16]. 5D

We proved that the type of classical motion is corre-
lated with the structure of the stationary wave functions 
of highly excited states in the regularity-chaos-
regularity transition. Correlations were found both in 
the coordinate space (the lattice of nodal curves and the 
distribution of the probability density) and in the Hilbert 
space associated with the integrable part of Hamiltonian 
(the distribution of the wave functions in the oscillator 
basis and the entropy of individual eigenstates). Calcu-
lations with the scaled Planck constant, that make it 
possible to obtain wave functions with equal quantum 
numbers and energies corresponding to different types 
of classical motion, enabled us to separate unambigu-
ously correlation effects in the structure of wave func-
tions. 

The Hamiltonian of quadruple oscillations was used 
as an example to study the shell structure destruction 
induced by the increase of nonintegrable perturbation 
which models residual nucleon-nucleon interaction 
[17]. In the vicinity of the classical critical energy there 
were observed multiple quasicrossings of the energy 
levels, violation of the quasiperiodical energy depend-
ence of the entropy, and increase of the average value 
fluctuations of the operators used to classify the eigen-
states of the integrable problem. 

Recently Zaslavsky and Edelman [18] considered a 
model of a billiard-type system, which consists of two 
chambers connected through a hole. One chamber has a 
circle-shaped scatterer inside, and the other one has a 
Cassini oval with a concave border. As was shown, the 
corresponding distribution function does not reach equi-
librium even during the anomalously large time. We 
want to note, that the mixed state, at energy a little ex-

ceeding the saddle, can serve as a more realistic model 
for study of anomalous kinetics. 

The so-called complex systems have attracted con-
siderable attention at the last time. This is a wide class 
of systems that even includes some biological objects. 
The very different systems can belong to this class, if 
they exhibit the following common features: (i) a com-
plex system is composed of several interacting compo-
nents; (ii) its phase space contains regions of regular 
and chaotic dynamics; (iii) it exhibits a multiscale spati-
otemporal behavior. Because of the presence of differ-
ent component, it is expected that even a weak perturba-
tion induces transition between them. In this case one 
can formulate a problem of control of the dynamics of 
the complex system.  

This problem can be solved by application of stan-
dard methods of control of the chaotic systems. The 
general idea of these methods is to optimize the dynam-
ics and to obtain the desired behavior by applying an 
intentional small perturbation to the system. As a result, 
chaotic oscillations are transformed into periodic ones. 
It is assumed, that the perturbation, being weak, does 
not change the topology of the phase space.  

The above mentioned complexity is not necessarily 
an attribute of high-dimensional systems only. It may 
also be found in low-dimensional systems. In particular, 
the low-dimensional dynamics is realized in so-called 
reversible systems which exhibit typical complex be-
havior. The phase space of such systems usually con-
tains elements of Hamiltonian systems (stability islands 
and resonances) as well as elements of dissipative sys-
tems (attractors and invariant attractive sets). The inter-
play between these elements gives rise to rather compli-
cated dynamics as compared with the dynamics of ei-
ther pure Hamiltonian or pure dissipative systems. 

We studied [19,20] the possibility of controlling a 
high-period unstable orbit in two-dimensional reversible 
map 
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Dynamics of the complex system described by this 
map is essentially affected by the interaction between 
the attractor and the stability islands. This interaction 
gives rise to strong spatial and temporal inhomogeneity 
— a typical trajectory consists of regular parts (close to 
the attractor) and chaotic one far away from it. In the 
chaotic region the trajectory exhibits intermittency, i.e., 
a diffusive motion along  axis is suddenly interrupted 
by long jumps. When  the diffusion becomes 
anomalously fast: the root-mean-square displacement 
grows exponentially with time. 

y
y → ±∞

Because of all these peculiarities, which are typical 
for any complex system, a direct application of the stan-
dard method to control high-period unstable orbit fails. 
Effective at every step of iteration, it nevertheless 
requires hard computational efforts to calculate stable 
and unstable directions at each point of the orbit. Alter-
native option — to apply control perturbation only on 
each period — is much easier from the point of view of 
calculations, but is unstable with respect to external 
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noise. Our version of the standard method of control 
[20] is free from these difficulties. It was developed 
especially for systems with strongly nonhomogeneous 
phase space and is based on conception of local and 
global control. This conception is useful in situations 
where there are “dangerous” points on the target orbit, 
i.e., the points where the probability of breakdown of 
control is high. As a result, the dangerous points turn 
out to be much more sensitive to external noise than 
other points on the orbit. And only the dangerous points 
determine how effective the control is. 

 

 
Stabilization of the coordinate when control is 

switched on: (a) without noise; (b) with Gaussian noise 
nr

 
In Figure we show the behavior of the deviation 

 ( r is the target period — 34 orbit for the con-
sidered map) without noise (a) and with Gaussian noise 
(b). The concept of local and global control turns out to 
be sufficiently powerful and effective and makes it es-
sential element of modern control methods. 
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МИР ХАОСА 

Ю.Л. Болотин, В.В. Яновский 

Работа посвящена обсуждению природы современной парадигмы детерминированного хаоса: перехода 
от старой философии понимания хаоса как результата неконтролируемых воздействий на систему к теории 
внутреннего механизма появления хаоса в нелинейных системах. Доклад кратко знакомит с основными эта-
пами исследований в рамках нового подхода. Достижения этого нового подхода демонстрируются на двух 
важных системах – бильярдах и атомных ядрах. 

 
 

ВСЕСВІТ ХАОСУ  

Ю.Л. Болотін, В.В. Яновський 

Робота присвячена обговоренню природи сучасної парадигми детермінованого хаосу: переходу від ста-
рої філософії розуміння хаосу, як результату неконтрольованих впливів на систему до теорії внутрішнього 
механізму появи хаосу в нелінійних системах. Доповідь стисло знайомить з головними етапами досліджень 
у рамках нового підходу. Досягнення цього нового підходу демонструються на двох важливих системах – 
більярдах та атомних ядрах. 
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