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The problem of dynamical chaos arising in distributed systems is considered. It was shown that in many cases it 
is possible to allocate relatively isolated subsystem which may be simpler for investigation. We suppose that chaos 
in this subsystem leads to chaotic behavior of all system. Besides, the allocated subsystem may be used for describ-
ing complex dynamics of nonlinear three-wave interaction, in particular, in plasma systems. The analytical criterion 
of arising dynamics chaos in distributed system was obtained. This criterion was confirmed by numerical simula-
tion. 
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1. INTRODUCTION 

The distributed physical systems are the most widely 
spread object in nature. For example there are hydrody-
namic systems, astrophysical objects. They spread in 
applied physical investigation, technique and technol-
ogy. As example of such systems there are different 
plasma ones. They may be used in nuclear fusion and in 
plasma electronics. The last case is interesting for us. 
The different electrodynamic structures filled by plasma 
are very interesting for designing electromagnetic gen-
erators in wide range of wave length and charged parti-
cles acceleration in different range of energy. Such sys-
tems are described by nonlinear differential equations in 
partial derivatives and so they are very difficult for in-
vestigation. In present time there are some number 
works in which a process of dynamic chaos arising is 
considered (see for example [1–3]) 

In plasma filled electrodynamics system there is 
large number of different oscillations kind which are 
often nonlinear and interact with each other. For study-
ing these phenomena the Maxwell equations and hydro-
dynamics one (or kinetic equation) are used. In most 
cases the natural modes may be chosen in such systems 
for investigation. This allows to replace very compli-
cated set of partial differential equations by ordinary 
differential ones. This essentially simplifies investiga-
tions of such systems. These equations describe nonlin-
ear interaction of individual oscillators. Such model was 
considered in [1]. The left part of each equation in this 
case may be presented as equation for linear oscillation 
and right one is describing the nonlinear interaction be-
tween them.  

In many cases it is possible to separate in distributed 
systems a relatively isolated subsystem which is de-
scribed by means of the finite number of ordinary dif-
ferential equations. We will suppose that chaos arising 
in such subsystem will cause chaos in all distributed 
system. It is necessary, of course, to note that this as-
sumption will not be true always. Moreover, the cases 
are known when this assumption is not true. However 
discussion of this important theme we will consider in 
the next work. 

We are interested in condition of arising of chaos in 
such dynamical system. Later we will follow to this 
mean of simplifying in distributed systems. As it will be 
seen later in some cases the analytical results may be 
obtained. As an example we considered a system in 
which it is possible to separate three connected nonlin-
ear oscillators. For this case the analytical conditions are 
defined for arising of dynamic chaos. We note that con-
sidered system of three connected nonlinear oscillators 
may describe a chaos arising in three-wave interaction, 
in particular three-wave decay in plasma systems. In 
this case the HF wave decays into HF and LF waves. 

Besides the present work we investigated relative 
role of quadratic and cubic nonlinearities. Besides ana-
lytical investigations we carried out numerical simula-
tion. The spectra and correlation functions were ob-
tained. It was shown that local instability is a reason of 
chaos arising in three-wave decay. 

2. ALGORITHM OF SIMPLIFYING FOR 
DISTRIBUTED SYSTEM 

The above considered approach may be realized par-
ticularly in the following way. Let us consider differen-
tial equation in partial derivatives. We shall restrict to 
consideration of the equations of second order with two 
independent variables  and t : x
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Moreover, we will consider the coefficients 
 that are constants and all nonlinearity and 

stationarity is taken into account by function Φ  in right 
hand side of equation (1). We will consider that influ-
ence of nonlinearity and stationarity is small. This 
means that coefficient  is small. Further we will be 
interested in a wave processes and so it means that coef-
ficients  and C  are connected by correlation (con-
dition, inequality): 
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This denotes that further we will be restricted to hy-

perbolic equations. In this case equation (1) may be re-
duced to the following: 
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We will note that this equation may be obtained, for 
example, from Maxwell equations to describe dynami-
cal wave interaction in nonlinear matter, for example, in 
interaction of waves in plasma. For completeness of 
mathematical formulation it is needed to add boundary 
and initial conditions to equation (3). We will consider 
that waves interaction takes place in bounded space re-
gion . In this case one may use, for example, 
the following conditions: 
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The first condition in (4) denotes that amplitudes of 
oscillation processes at bounds of the interaction region 
are equal to zero. It may be, for example, a nonlinear 
string with fixed ends or a waves processes in long cav-
ity. In the last case it is needed to consider transverse 
component of electric field as amplitude . The solu-
tion of equation (2) we will present as following: 

E

( , , ) ( , ) sin( )n
nE t x A t x

L
π

µ µ=∑ . (5) 

It is needed to note that if nonlinearity is absent 
( ) the coefficients  are 0µ = ( )nA t

( ) exp( )n nA t a i tϖ= n , (6) 

where 2 2( / )n c n L kϖ π ⊥= −  is the frequency of the 
corresponding Fourier component. 

In the weakly nonlinear case equation (3) may be 
presented as an infinite set of connected nonlinear oscil-
lators: 
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If boundary conditions (4) change then it is neces-

sary to use solution in the form ( )
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stead of solution (5). If waves interact in nonlinear mat-
ter placed in metallic cylinder with ideally conducting 
wall then one may write the following correlation: 
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where  defines transverse wave number and condi-
tion  defines boundary condition on cylin-
drical surface. 

k⊥
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We will show that practically always one may sepa-
rate two HF oscillators which will resonantly interact 
with one of the low frequency oscillators. Really, for 
HF oscillators , so frequency difference of two 
HF oscillators may be presented in such form: 

1n >>

( ) ( ) (/m n c L m nϖ ϖ π− = − . (9) 
From expression (9) it follows that for long enough 

region of interaction ( ) distance between fre-
quencies of HF oscillators may be practically of any 
value. It means that practically always the low fre-

quency oscillator exists for which resonant condition is 
satisfied: 

hfL λ>>

m n Lϖ ϖ− = Ω . (10) 
Thus we see that practically for any wave processes 

in distributed systems one may separate three resonantly 
interacting oscillators. Further we will suppose that if 
dynamics of these three oscillators is chaotic then dy-
namics of distributed system is chaotic also. Of course 
this is true not always, yet in many cases such corre-
spondence takes place. Thus task about condition of a 
chaos arising in distributed systems may be reduced to 
simpler one: to define condition of chaos arising in sys-
tem that consist of three connected nonlinear oscillators. 

The analysis of dynamics of three nonlinear con-
nected oscillators in our case may be essentially simpli-
fied. It is possible because we separated two HF oscilla-
tors. For these two oscillators one may use strict proce-
dure of averaging. In this case the solution for HF oscil-
lators may be presented in such form: 
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where new unknown functions are slowly changing. It is 
needed to note that instead one unknown function  

we involve two unknown  and . For our bound-
ary condition (4) and solution in form (5) the values A  

are real. This means that correlation ϖ  takes 
place. Substituting solution (11) in equation (7) and 
carrying out averaging we obtain the following short-cut 
equations to define values of : 
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where in right part of (12) it is needed to keep slowly 
varying values. For LF oscillators we keep non short-cut 
equations: 

2
LF LF LFµ+Ω =�� . (13) F

As example of using of described above algorithm 
for defining conditions of dynamical chaos in distrib-
uted system we will consider in following sections the 
interaction of two HF waves and one LF wave in plasma 
which may be reduced to three nonlinear connected os-
cillators. 

3. STOCHASTIC INSTABILITY  
OF A WEAKLY NONLINEAR DYNAMIC 
WAVE-WAVE INTERACTION PROCESS 
The conditions under which the waves excited in 

plasma have sufficiently large amplitudes can be favor-
able for their efficient nonlinear interaction with other 
eigenwaves of an electrodynamic plasma structure. The 
dynamics of this interaction can be either regular or 
stochastic. We will be interested in stochastic regimes 
that can occur in various nonlinear wave-wave interac-
tion schemes. The simplest of such regimes is the modi-
fied decay process. The stochastic instability develops 
only when the amplitude of the decaying wave (the 
pump wave) exceeds a certain threshold value. 
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Let a wave with the amplitude a , wave vector , 

and frequencyω  decay into two waves with parameters 
 and ( , . Let there also be a forth 

wave with parameters  such that  
and . We first assume that fourth wave 
does not participate in the decay process. In this case the 
time evolution of the amplitudes of three interaction 
wave is described by equations 
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where 1 1 0exp( )V V i= Φ  is interaction matrix element 

and exp(j ja a=
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jΦ . The phase 

 varies in accordance with 
the mathematical pendulum equations  
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This equation implies that half-width of nonlinear reso-
nance is equal to ,4G 1 1G a V= . The interaction be-
tween first, second, and fourth (instead of third) waves 
is described by the following set of equations: 
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where δ ω .  1 2ω ω= − − 4

In this case the phase 
 also satisfies the 

mathematical pendulum equations. In this case, the half-
width of nonlinear resonance is equal to , 

1 2 4 02( )tδΨ = Φ −Φ −Φ +Φ +

24G

2 1 2G a V=

2δ
. The frequency separation between two 

nonlinear resonances is . Assuming that, in the case 
of interaction involving the fourth wave, the width of 
the nonlinear resonance is small ( ), we obtain 
the following resonance overlap condition, or the sto-
chastic instability criterion: 

2G G�

2 / 1K G δ= > . (17) 

Let us consider (as in [4]) a high-frequency (HF) 
electromagnetic wave with the frequency  and wave 
vector , that propagates in infinite plasma and decays 
into HF electromagnetic wave with parameters (ω , k ) 
and LF Langmuir wave with the parameters (ω , ). 
We describe this decay process by Maxwell’s equations 
for the electromagnetic field and the hydrodynamic 
equations for the plasma electrons against the neutraliz-
ing back-ground of immobile ions. Averaging over time 

 the following set of equations for 
slowly varying dimensionless amplitudes of HF decay-
ing electromagnetic wave ε , scattered HF wave ε  and 
LF plasma wave  was obtained: 
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where – is dimensionless time,  – dimensionless 
difference between  and ω , – dimensionless fre-
quency of LF wave. In deriving equations (18) it is as-
sumed that there is spatial synchronization between the 
interacting waves, . If the growth rate of the 
decay instability described by (18) is much lower than 
frequency  of the LF wave, then (18) can be simpli-
fied by replacing the third of them, which is a second 
order differential equation, with a first-order equation 
for for the LF wave amplitude. Under the assumption 

, the set of Eqs. (18) is analogous to the set 
of Eqs. (14). For the case of interaction of these two HF 
waves with a backward LF wave (having the frequency 

) Eqs. (5) can be reduced to (16) in which by  
should be meant the amplitude of the backward LF 
wave. Eqs. (18) refer to a situation that was described 
by two set of equations (14) and (16). In such system 
can exist chaotic regimes. For the large value amplitude 
of the incident wave the dynamic of this system is cha-
otic. 
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The set of equations (18) was investigated numeri-
cally. The typical shapes of  ε ,  and  is presented in 
Fig. 1. As it is seen three wave decay have chaotic char-
acter. 
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Fig. 1.  Results of numerical simulation of equations 

set (18) 

4. ARISING CHAOS IN A SYSTEM  
OF THREE NONLINEAR CONNECTED 

OSCILLATORS 
Later we will consider more some general system 

then in previous section. This is a system of three con-
nected nonlinear oscillators that was investigated nu-
merically. We do not make averaging in this case. Such 
system may be described by means a Hamiltonian that 
is as following: 
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where  is the generalized coordinate describing i-th 
oscillator, point above character  denotes derivative 
with respect to time, ω  is the natural frequency of i-th 
oscillator, is the coefficient describing quadratic 
nonlinearity and V  is the coefficient responsible for 
cubic nonlinear interaction between i-th and j-th oscilla-
tors. From Hamiltonian (19) we obtained equations of 
motion for oscillators which do not give here. One may 
describe the processes similar to one that we considered 
in previous section. Using the Hamiltonian is more gen-
eral way of solving this problem We suppose that sec-
ond oscillator corresponds to the high frequency wave 
with frequency ω  which decays into HF wave with 
frequency ω  and low frequency with ω .Thus the con-
dition  is satisfied, and ω . In [5] 
the criterion for arising of chaos conditioned by quad-
ratic nonlinearity was obtained and looks as following: 
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where  is the initial amplitude of decaying wave. A 
system described by Hamiltonian (19) was investigated 
numerically separately for quadratic and cubic nonlin-
earity. A spectrum and correlation function was calcu-
lated. Lyapunov exponent and characteristic number of 
Jacobian were calculated for quadratic nonlinearity. It is 
needed to note that when the condition (20) was satis-
fied among characteristic numbers there were such 
whose real part was positive. In this case the realization 
of ,  and  looks as no more regular as demon-
strated in Fig. 2.  

20y

2y1y 3y

 
Fig. 2.  Realization of ,  and  for system de-

scribed by Hamiltonian (19) without cubic addendum  
1y 2y 3y

The Lyapunov exponent was calculated by means of 
Benettin algorithm and was positive. It indicates local 
instability in phase space and chaotic behavior of oscil-
lations. The spectrum and correlation function for 

is given in Fig. 3 and 4 correspondingly. 1Re( )y
As it is seen the correlation function decreases. 

When inequality (20) is inverse the chaotic behaviors 
disappear gradually, thus it does not have a threshold. In 

this case the spectrum converges gradually and correla-
tion time increases gradually too when  decreases 
and oscillations become regular. 

20y

 
Fig. 3.  Spectrum for  presented in Fig. 2. 1Re( )y

 
Fig. 4.  Correlation function for  presented 

in Fig. 2. 
1Re( )y

Numerical simulation for cubic nonlinearity showed 
that chaos in this case arises at large initial value of 
generalized coordinates. As it is seen from (19) the cu-
bic addendums are responsible for nonlinear frequency 
shift. 

 
Fig. 5.  Realization of ,  and  for system de-

scribed by Hamiltonian (19) with cubic addendum 
1y 2y 3y

 
Fig. 6.  Correlation function for realizations pre-

sented in Fig. 5 
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Thus the quadratic nonlinearity plays essential role 

in chaos arising in system of connected nonlinear oscil-
lators. Chaos in this case arises at lower level of initial 
amplitude then for cubic nonlinearity. The most charac-
teristic realizations for this case are presented in Fig. 5 
and correlation function in Fig. 6. 

 

5. CONCLUSIONS 
In this report the problem of chaos arising in com-

plex distributed system is considered. The algorithm of 
reducing of investigation is proposed and used for con-
crete physical system. Such system may be used for 
investigation of different physical processes. In particu-
lar it may describe weakly nonlinear interaction waves 
in plasma electrodynamics system. It may be a nonlin-
ear decay of a high frequency electromagnetic wave into 
new one and a low frequency wave. At certain condi-
tions which were presented above this process is cha-
otic. It was shown that in such system the chaotic re-
gimes may exist.  

The results of numerical investigation of chaos aris-
ing in system which contains three nonlinear connected 
oscillators are presented. The numerical simulation 
showed the existence of chaotic regimes for quadratic 
nonlinearity. It was confirmed by calculation of spec-
trum, correlation function and Lyapunov exponents. 
When process is chaotic the spectrum is spread, correla-
tion function decreases, and Lyapunov exponents have 
positive real part. It points on the local instability. 

It is needed to note that investigation of dynamical 
chaos in distributed systems with cubic nonlinearity was 
carried out in [2]. The analytical condition of appear-
ance of local instability were obtained. Comparing this 
conditions with (20) shows that dynamical chaos condi-
tioned by quadratic nonlinearity develops at smaller 
amplitude values of interacting wave. 
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РАЗВИТИЕ ДИНАМИЧЕСКОГО ХАОСА В СИСТЕМЕ БОЛЬШОГО ЧИСЛА НЕЛИНЕЙНЫХ 
СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ 

В.A. Буц, И.К. Ковальчук, Д.В. Тарасов  

Рассматривается проблема возникновения динамического хаоса в распределенных системах. Показано, 
что во многих случаях возможно выделить относительно изолированные подсистемы в распределенных сис-
темах, которые могут быть значительно проще для исследования. Мы полагаем, что хаос в этих подсистемах 
является источником хаотического поведения всей системы. Кроме того, выделенные системы могут быть 
использованы для описания сложной динамики нелинейного трехволнового взаимодействия, в частности, в 
плазменных системах. Получен аналитический критерий возникновения динамического хаоса для выделен-
ных подсистем. Этот критерий подтвержден численными исследованиями.  
 
 

РОЗВИТОК ДИНАМІЧНОГО ХАОСУ В СИСТЕМІ ВЕЛИКОЇ КІЛЬКОСТІ НЕЛІНІЙНИХ 
ЗВ'ЯЗАНИХ ОСЦИЛЯТОРІВ 

В.О. Буц, І.К. Ковальчук, Д.В. Тарасов  

Розглядається проблема виникнення динамічного хаосу в розподілених системах. Показано, що в бага-
тьох випадках можливо виділити відносно ізольовані підсистеми в розподілених системах, які можуть бути 
значно простіше для дослідження. Ми вважаємо, що хаос у цих підсистемах є джерелом хаотичної поведін-
ки всієї системи. Крім того, виділені системи можуть бути використані, для опису складної динаміки нелі-
нійної трьох-хвильової взаємодії, зокрема в плазмових системах. Отримано аналітичний критерій виникнен-
ня динамічного хаосу для виділених підсистем. Цей критерій підтверджений чисельними дослідженнями.  
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