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The problem of dynamical chaos arising in distributed systems is considered. It was shown that in many cases it
is possible to allocate relatively isolated subsystem which may be simpler for investigation. We suppose that chaos
in this subsystem leads to chaotic behavior of all system. Besides, the allocated subsystem may be used for describ-
ing complex dynamics of nonlinear three-wave interaction, in particular, in plasma systems. The analytical criterion
of arising dynamics chaos in distributed system was obtained. This criterion was confirmed by numerical simula-

tion.
PACS: 05.45Ac, 52.35Hw

1. INTRODUCTION

The distributed physical systems are the most widely
spread object in nature. For example there are hydrody-
namic systems, astrophysical objects. They spread in
applied physical investigation, technique and technol-
ogy. As example of such systems there are different
plasma ones. They may be used in nuclear fusion and in
plasma electronics. The last case is interesting for us.
The different electrodynamic structures filled by plasma
are very interesting for designing electromagnetic gen-
erators in wide range of wave length and charged parti-
cles acceleration in different range of energy. Such sys-
tems are described by nonlinear differential equations in
partial derivatives and so they are very difficult for in-
vestigation. In present time there are some number
works in which a process of dynamic chaos arising is
considered (see for example [1-3])

In plasma filled electrodynamics system there is
large number of different oscillations kind which are
often nonlinear and interact with each other. For study-
ing these phenomena the Maxwell equations and hydro-
dynamics one (or kinetic equation) are used. In most
cases the natural modes may be chosen in such systems
for investigation. This allows to replace very compli-
cated set of partial differential equations by ordinary
differential ones. This essentially simplifies investiga-
tions of such systems. These equations describe nonlin-
ear interaction of individual oscillators. Such model was
considered in [1]. The left part of each equation in this
case may be presented as equation for linear oscillation
and right one is describing the nonlinear interaction be-
tween them.

In many cases it is possible to separate in distributed
systems a relatively isolated subsystem which is de-
scribed by means of the finite number of ordinary dif-
ferential equations. We will suppose that chaos arising
in such subsystem will cause chaos in all distributed
system. It is necessary, of course, to note that this as-
sumption will not be true always. Moreover, the cases
are known when this assumption is not true. However
discussion of this important theme we will consider in
the next work.
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We are interested in condition of arising of chaos in
such dynamical system. Later we will follow to this
mean of simplifying in distributed systems. As it will be
seen later in some cases the analytical results may be
obtained. As an example we considered a system in
which it is possible to separate three connected nonlin-
ear oscillators. For this case the analytical conditions are
defined for arising of dynamic chaos. We note that con-
sidered system of three connected nonlinear oscillators
may describe a chaos arising in three-wave interaction,
in particular three-wave decay in plasma systems. In
this case the HF wave decays into HF and LF waves.

Besides the present work we investigated relative
role of quadratic and cubic nonlinearities. Besides ana-
lytical investigations we carried out numerical simula-
tion. The spectra and correlation functions were ob-
tained. It was shown that local instability is a reason of
chaos arising in three-wave decay.

2. ALGORITHM OF SIMPLIFYING FOR
DISTRIBUTED SYSTEM

The above considered approach may be realized par-
ticularly in the following way. Let us consider differen-
tial equation in partial derivatives. We shall restrict to
consideration of the equations of second order with two
independent variables x and 7:
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Moreover, we will consider the coefficients
A,B,C,D that are constants and all nonlinearity and
stationarity is taken into account by function @ in right
hand side of equation (1). We will consider that influ-
ence of nonlinearity and stationarity is small. This
means that coefficient p is small. Further we will be
interested in a wave processes and so it means that coef-
ficients 4, B and C are connected by correlation (con-
dition, inequality):

B*—AC>0. 2)
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This denotes that further we will be restricted to hy-
perbolic equations. In this case equation (1) may be re-
duced to the following:

OE —-C? 62_E =
or’ ox’

We will note that this equation may be obtained, for
example, from Maxwell equations to describe dynami-
cal wave interaction in nonlinear matter, for example, in
interaction of waves in plasma. For completeness of
mathematical formulation it is needed to add boundary
and initial conditions to equation (3). We will consider
that waves interaction takes place in bounded space re-
gion 0<x< L. In this case one may use, for example,
the following conditions:

E@,0)=E(t,L)=0,

XZE + Hq)nonl . (3)

E(0,x) = f(x), 4)
OF
5 /=0 = F(x)

The first condition in (4) denotes that amplitudes of
oscillation processes at bounds of the interaction region
are equal to zero. It may be, for example, a nonlinear
string with fixed ends or a waves processes in long cav-
ity. In the last case it is needed to consider transverse
component of electric field as amplitude E . The solu-
tion of equation (2) we will present as following:

E(t,x, 1) =Y 4,1, 1) sin(% x). (5)

It is needed to note that if nonlinearity is absent
(n =0) the coefficients 4 (¢) are

4,(t)=a, expli, 1), ©)

where @, =c \/(tn/L)’ —k] is the frequency of the

corresponding Fourier component.
In the weakly nonlinear case equation (3) may be
presented as an infinite set of connected nonlinear oscil-

lators:
2
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If boundary conditions (4) change then it is neces-

sary to use solution in the form E =)’ 4, (t)eiT in-
stead of solution (5). If waves interact in nonlinear mat-
ter placed in metallic cylinder with ideally conducting
wall then one may write the following correlation:

kimREkm; JO (}\’m):O’ (8)
where k, defines transverse wave number and condi-
tion J,(A,,)=0 defines boundary condition on cylin-
drical surface.

We will show that practically always one may sepa-
rate two HF oscillators which will resonantly interact
with one of the low frequency oscillators. Really, for
HF oscillators n>>1, so frequency difference of two
HF oscillators may be presented in such form:

(@, -®,)=(nc/L)(m-n). ©)

From expression (9) it follows that for long enough
region of interaction (L >>1,, ) distance between fre-

quencies of HF oscillators may be practically of any
value. It means that practically always the low fre-

quency oscillator exists for which resonant condition is
satisfied:

w,-®,=0Q,,. (10)

Thus we see that practically for any wave processes
in distributed systems one may separate three resonantly
interacting oscillators. Further we will suppose that if
dynamics of these three oscillators is chaotic then dy-
namics of distributed system is chaotic also. Of course
this is true not always, yet in many cases such corre-
spondence takes place. Thus task about condition of a
chaos arising in distributed systems may be reduced to
simpler one: to define condition of chaos arising in sys-
tem that consist of three connected nonlinear oscillators.

The analysis of dynamics of three nonlinear con-
nected oscillators in our case may be essentially simpli-
fied. It is possible because we separated two HF oscilla-
tors. For these two oscillators one may use strict proce-
dure of averaging. In this case the solution for HF oscil-
lators may be presented in such form:

_ . imt —iw ,t
A, =x,e"" +x_,e "

. . » (11)
A, =iw, [xnem"t —X_pe m“t},

where new unknown functions are slowly changing. It is
needed to note that instead one unknown function A4,

we involve two unknown X, and X_, . For our bound-

ary condition (4) and solution in form (5) the values A4

are real. This means that correlation @ _, = —w, takes

place. Substituting solution (11) in equation (7) and
carrying out averaging we obtain the following short-cut

equations to define values of X, :

dx,, e ot
i Mo, )
where in right part of (12) it is needed to keep slowly
varying values. For LF oscillators we keep non short-cut
equations:
Ay +QZALF =puF . (13)
As example of using of described above algorithm
for defining conditions of dynamical chaos in distrib-
uted system we will consider in following sections the
interaction of two HF waves and one LF wave in plasma
which may be reduced to three nonlinear connected os-
cillators.

(12)

3. STOCHASTIC INSTABILITY
OF A WEAKLY NONLINEAR DYNAMIC
WAVE-WAVE INTERACTION PROCESS

The conditions under which the waves excited in
plasma have sufficiently large amplitudes can be favor-
able for their efficient nonlinear interaction with other
eigenwaves of an electrodynamic plasma structure. The
dynamics of this interaction can be either regular or
stochastic. We will be interested in stochastic regimes
that can occur in various nonlinear wave-wave interac-
tion schemes. The simplest of such regimes is the modi-
fied decay process. The stochastic instability develops
only when the amplitude of the decaying wave (the
pump wave) exceeds a certain threshold value.
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Let a wave with the amplitude a,, wave vector %,
and frequency ®, decay into two waves with parameters
(a,,k,,0,) and (a,,k;,»,). Let there also be a forth
wave with parameters (a,,k,,0,) such that k, =k,
and o, -0, <o,. We first assume that fourth wave

does not participate in the decay process. In this case the
time evolution of the amplitudes of three interaction
wave is described by equations

a =i Vl*a2a3,

ay = iVad;, (14)
a =i Vlalaz,

where V, =|Vl|exp(iCDO) is interaction matrix element

and a;, = |aj|exp(id) DE The phase
O=2(D, -, -D, +d,) varies in accordance with

the mathematical pendulum equations

O +(2|a,||V;])* sin®@ =0. (15)

This equation implies that half-width of nonlinear reso-
nance is equal to 4G,G :|al||Vl|. The interaction be-

tween first, second, and fourth (instead of third) waves
is described by the following set of equations:

a, =iV, a,a, exp(-idt),

a, = inalaz exp(—idt), (16)
a, =iV,a,a, exp(—idt),

where 8 =0, —®, -0, .
In this case the phase

V=20 -0, -0, +D +51)
mathematical pendulum equations. In this case, the half-
width of nonlinear resonance is equal to 4G,,

also satisfies the

G, = |al ||V2| The frequency separation between two

nonlinear resonances is 28 . Assuming that, in the case
of interaction involving the fourth wave, the width of
the nonlinear resonance is small (G > G, ), we obtain
the following resonance overlap condition, or the sto-
chastic instability criterion:

K=2G/5>1. (17)

Let us consider (as in [4]) a high-frequency (HF)
electromagnetic wave with the frequency o, and wave
vector k,, that propagates in infinite plasma and decays
into HF electromagnetic wave with parameters (®_, &, )
and LF Langmuir wave with the parameters (®,,k,).

We describe this decay process by Maxwell’s equations
for the electromagnetic field and the hydrodynamic
equations for the plasma electrons against the neutraliz-
ing back-ground of immobile ions. Averaging over time
t, >, ~1/w, the following set of equations for

slowly varying dimensionless amplitudes of HF decay-
ing electromagnetic wave ¢,, scattered HF wave ¢_ and

LF plasma wave p was obtained:
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iﬁ =g _pexp(iAt)
dt

S

i

=g, p exp(—iAt) (18)

dt
d’p
dx*
where t — is dimensionless time, A — dimensionless
difference between ®, and o,, Q — dimensionless fre-

+Qp =¢.e. exp(—iAt),

quency of LF wave. In deriving equations (18) it is as-
sumed that there is spatial synchronization between the
interacting waves, k, —k =k, . If the growth rate of the

decay instability described by (18) is much lower than
frequency Q of the LF wave, then (18) can be simpli-
fied by replacing the third of them, which is a second
order differential equation, with a first-order equation
for for the LF wave amplitude. Under the assumption
o, —m, =, the set of Eqs. (18) is analogous to the set

of Egs. (14). For the case of interaction of these two HF
waves with a backward LF wave (having the frequency
—Q) Egs. (5) can be reduced to (16) in which by q,

should be meant the amplitude of the backward LF
wave. Eqgs. (18) refer to a situation that was described
by two set of equations (14) and (16). In such system
can exist chaotic regimes. For the large value amplitude
of the incident wave the dynamic of this system is cha-
otic.

The set of equations (18) was investigated numeri-
cally. The typical shapes of ¢€,, €, and is presented in

Fig. 1. As it is seen three wave decay have chaotic char-
acter.
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Fig. 1. Results of numerical simulation of equations
set (18)

4. ARISING CHAOS IN A SYSTEM
OF THREE NONLINEAR CONNECTED
OSCILLATORS

Later we will consider more some general system
then in previous section. This is a system of three con-
nected nonlinear oscillators that was investigated nu-
merically. We do not make averaging in this case. Such
system may be described by means a Hamiltonian that
is as following:

Lox 2 x = 2 x %
H =y +0 niy + 0202 + 03120 + 1333
2 * * E *

T3 303 V0 y3 +V v 3

tuynmnn +Vonn yayz +Viznn v s
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V02 2y2¥2 +V233202 V313 + V331313035



where y, is the generalized coordinate describing i-th
oscillator, point above character y, denotes derivative
with respect to time, o, is the natural frequency of i-th
oscillator, V is the coefficient describing quadratic
nonlinearity and V; is the coefficient responsible for
cubic nonlinear interaction between i-th and j-th oscilla-
tors. From Hamiltonian (19) we obtained equations of
motion for oscillators which do not give here. One may
describe the processes similar to one that we considered
in previous section. Using the Hamiltonian is more gen-
eral way of solving this problem We suppose that sec-
ond oscillator corresponds to the high frequency wave
with frequency ©, which decays into HF wave with

frequency o, and low frequency with o, .Thus the con-
dition ®, =, +o, is satisfied, and ©,, > o,. In [5]

the criterion for arising of chaos conditioned by quad-
ratic nonlinearity was obtained and looks as following:

V¥
s

K="22 51, (20)

where y,, is the initial amplitude of decaying wave. A

system described by Hamiltonian (19) was investigated
numerically separately for quadratic and cubic nonlin-
earity. A spectrum and correlation function was calcu-
lated. Lyapunov exponent and characteristic number of
Jacobian were calculated for quadratic nonlinearity. It is
needed to note that when the condition (20) was satis-
fied among characteristic numbers there were such
whose real part was positive. In this case the realization
of y,, », and y, looks as no more regular as demon-

strated in Fig. 2.
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Fig. 2. Realization of y,, y, and y, for system de-
scribed by Hamiltonian (19) without cubic addendum

The Lyapunov exponent was calculated by means of
Benettin algorithm and was positive. It indicates local
instability in phase space and chaotic behavior of oscil-
lations. The spectrum and correlation function for
Re(y,) is given in Fig. 3 and 4 correspondingly.

As it is seen the correlation function decreases.
When inequality (20) is inverse the chaotic behaviors
disappear gradually, thus it does not have a threshold. In

this case the spectrum converges gradually and correla-
tion time increases gradually too when y,, decreases

and oscillations become regular.
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Fig. 3. Spectrum for Re(y,) presented in Fig. 2.
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Fig. 4. Correlation function for Re(y,) presented
in Fig. 2.

Numerical simulation for cubic nonlinearity showed
that chaos in this case arises at large initial value of
generalized coordinates. As it is seen from (19) the cu-
bic addendums are responsible for nonlinear frequency
shift.
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Fig. 5. Realization of y,, y, and y, for system de-
scribed by Hamiltonian (19) with cubic addendum
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Fig. 6. Correlation function for realizations pre-
sented in Fig. 5
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Thus the quadratic nonlinearity plays essential role
in chaos arising in system of connected nonlinear oscil-
lators. Chaos in this case arises at lower level of initial
amplitude then for cubic nonlinearity. The most charac-
teristic realizations for this case are presented in Fig. 5
and correlation function in Fig. 6.

5. CONCLUSIONS

In this report the problem of chaos arising in com-
plex distributed system is considered. The algorithm of
reducing of investigation is proposed and used for con-
crete physical system. Such system may be used for
investigation of different physical processes. In particu-
lar it may describe weakly nonlinear interaction waves
in plasma electrodynamics system. It may be a nonlin-
ear decay of a high frequency electromagnetic wave into
new one and a low frequency wave. At certain condi-
tions which were presented above this process is cha-
otic. It was shown that in such system the chaotic re-
gimes may exist.

The results of numerical investigation of chaos aris-
ing in system which contains three nonlinear connected
oscillators are presented. The numerical simulation
showed the existence of chaotic regimes for quadratic
nonlinearity. It was confirmed by calculation of spec-
trum, correlation function and Lyapunov exponents.
When process is chaotic the spectrum is spread, correla-
tion function decreases, and Lyapunov exponents have
positive real part. It points on the local instability.

It is needed to note that investigation of dynamical
chaos in distributed systems with cubic nonlinearity was
carried out in [2]. The analytical condition of appear-
ance of local instability were obtained. Comparing this
conditions with (20) shows that dynamical chaos condi-
tioned by quadratic nonlinearity develops at smaller
amplitude values of interacting wave.
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PA3BUTUE TUHAMUYECKOI'O XAOCA B CUCTEME BO.JbIIOIO YUCJIA HEJTMHEMHBIX
CBSI3AHHBIX OCIMJIJIATOPOB

B.A. byy, U.K. Kosanvuyk, /I.B. Tapacos

PaCCManI/IBaCTCH Hp06neMa BO3HUKHOBCHHA NTUHAMHYECKOTO XaocCa B PaCHPEACICHHBIX CUCTEMaXx. HOKaSaHO,
YTO BO MHOTHX CJIIydasiX BO3MOXHO BBIACINUTH OTHOCUTEIIHbHO U30JIMPOBAHHBIC ITOACUCTEMEBI B PACIIPEACIICHHBIX CUC-
TeMax, KOTOPBIE MOTYT OBITh 3HAYUTEIIBHO IIpouIeC AJIst UCCICAOBAHUA. Y31 moJjiara€M, 4To XaoC B OTHX IIOACHCTEMAax
SIBJIIETCSI ICTOYHUKOM XaO0THYECKOTO MOBEISHHS BCEH CHCTEMEI. KpOMe TOT'O, BBIACJIIEHHBIE CUCTEMBI MOI'YT OBITh
WCIIOJIB30BAHbI JUISI ONMCAHUS CIIOKHOW JUHAMUKHN HEITMHEWHOTO TPEXBOJIHOBOT'O BSaHMOﬂeﬁCTBHﬂ, B 4aCTHOCTH, B
IJIa3MCHHBIX CUCTEMax. Honyqu aHAJTUTHYCCKUM KpnTepm‘/i BO3HUKHOBCHHA TUHAMHWYCCKOI'O XaocCa AJist BBIACIICH-
HBIX IMOJCUCTEM. IToT KpnTepuﬁ MOATBCPKACH YNCIICHHBIMU UCCIICIOBAHUAMMU.

PO3BUTOK JUHAMIYHOI'O XAOCY B CUCTEMI BEJIMKOI KUIBKOCTI HEJTHIHHHAX
3B'A3AHUX OCHHUJIATOPIB

B.O. byy, LK. Kosanvuyk, /I.B. Tapacoe

Po3rnsinaersest poOiieMa BUHMKHEHHS! TMHAMIYHOTO XaoCy B pO3MoAiIeHHx cuctemax. [lokaszaHo, 1o B Oara-
THOX BHIQJIKaX MOXJIMBO BUJIUIMTH BiJHOCHO 130J1bOBaHI IiJICKCTEMH B PO3IOAIIEHUX CHCTEMaX, sIKi MOXKYTb OyTH
3HAYHO IMPOCTIlIe VISl AOCTi/KEeHHs.. MU BBayKaeMo, II0 XaoC y LUX MiICUCTEMAaX € JPKEPEJIOM XaOTHYHOI ITOBEiH-
KM Bciel cucremu. Kpim Toro, BuaizeHi cucTeMu MOXXYTh OyTH BUKOPHCTaHI, IUIsl ONUCY CKJIaJHOI JMHAMIKH HeJi-
HIHHOI TPhOX-XBHIILOBOI B3a€MOJIi1, 30KpeMa B IJIa3MOBHX cucTeMax. OTpUMaHO aHANITHYHUHN KpUTepili BHHHKHEH-
HS AMHAMIYHOTO Xa0Cy JJIs BUAUICHUX mifgcucteM. Lleit kpuTepiit migTBep ke YUCETbHAME TOCTIIHKSHHIMHU.
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