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Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system 

shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion 
coexist in different local minima. Three regimes of motion – regular ( ), mixed state ( ), and chaotic ( C ) – are 
considered. For each energy region the spectrum is calculated by direct diagonalization in polar coordinates, the 
eigenstates are classified according to the irreducible representations of vC3 -point group, and the spectral 
statistical properties are analyzed and compared to the theoretical predictions for integrable, chaotic and generic 
(neither regular nor chaotic) sy

R RC

the 

stems. 
PACS: 05.45-а, 05.45.Ac 
 

1. INTRODUCTION 
Searching for quantum manifestations of classical 

chaos has been the subject of series of investigations for 
the past decades [e.g. 1, 2]. The one way to do it is to 
analyze statistical properties of spectrum. Such investi-
gations have been done for model systems or systems 
with simple topology [e.g. 3, 4]. The present research is 
concerned to the two-dimensional multiwell system 
with the Hamiltonian in the form 
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The system (1) describes surface quadrupole oscilla-
tions of a spherical drop of some matter. This system 
has been previously studied numerically by 
V. Berezovoj et al. [5]. We present here research con-
cerning the so called “exact” eigenvalues, derived via 
the diagonalization procedure. 

The number of critical points of the potential (1b) 
depends on the parameter cb2=

min =

W . We consider the 
case , so that the system (1) is multiwell with 
four local minima and three saddle points (cf. Fig. 1). 
All the minima are of the value V . 

18=W
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For the system (1) the transition regularity-chaos-

regularity has been shown [6]. That means that the sys-
tem (1) moves regularly in the region ; invari-
ant tori are destroyed as  approaches  and the 
motion becomes chaotic in the region ; 
in the region  the regularity of the motion is 
recovered. In particular, for the case W  critical 
energies are found to be  for the central 
minima and  for the peripheral minima. Thus 
in the region 
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sVs E<2V  regular and irregular re-
gimes of motion coexist in different local minima. Such 
a phenomenon is called mixed state. 
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Fig. 1. Level lines of the potential part of the Hamil-

tonian (1) with  
(

048.0=b , 000128.0=c  
182 == cbW ). Dashed lines denote the zero Gaus-

sian curvature 

We investigated the motion of the system (1) in 
three different regions: regular ( R ) with energies 

, mixed ( ) with energies in the range 2/sVE < RC

sV
b

s EV <<2  and chaotic ( ) with V . 
Parameters  and  were chosen independently for 
each energy region in order to obtain enough energy 
levels for further statistical analysis (cf. Table 1).  

C 2crs EE <<
c

 
Table 1. The choice of parameters  and  for investi-

gating system (1) in energy regions , , C  
b c

R RC
Parameters 

Type of 
motion b  c  1crE  sE  2crE  

R  0.018 0.000018 385.8 868.1 1617451.8 
RC  0.048 0.000128 54.3 122.1 227454.2 
C  0.42 0.0098 0.7 1.5 2970.8 

2. CLASSICAL ORBITS 
The one of the commonly used ways for classifying 

the classical motion of the system is computation of the 
Poincaré surface of section pictures. 

To obtain surface of section pictures shown on 
Fig. 2 we used the classical equations of motion for the 
Hamiltonian (1) 
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)(42 22 yxcxbxyxx +−−−= , (2) H

)(4)( 2222 yxcyyxbyy +−−−−=  (3) 

and the fourth-order Runge-Kutta step method for com-
puting the classical trajectories. 
 

 
Fig. 2,a.  Type of motion . . Shown is 

the surface of section for central (left) and peripheral 
(right) local minima 

R 0.175=E

 

 
Fig. 2,b.  Type of motion . . Shown is 

the surface of section for central (left) and peripheral 
(right) local minima 

RC 0.80=E

 
Fig. 2,c (left).  Type of motion . RC

0703125.122== sVE  

Fig. 2,d (right).  Type of motion C . 0.80=E  
 

Fig. 2 demonstrates the type of classical motion in 
three energy regions of interest ( , , and C ). Par-
ticularly, mixed state is seen on Fig. 2b, 2c. 

R RC

3. COMPUTATION OF QUANTUM ENERGY 
SPECTRA 

For the purpose of quantum mechanical calculations 
we consider the Hamiltonian (1) in polar form 
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In order to calculate the quantum energy spectra the 
eigenvalue problem 

),( ),(),(ˆ ϕψ=ϕψϕ rErr   (5) 

should be solved. Eigenvalues of the Hamiltonian (4) 
were calculated by diagonalizing the Hamiltonian ma-
trix lNHlN ,ˆ, ′′ . The basis functions lN ,  were 

chosen in the form 
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where ),(, ϕru lN  are basis functions of the unperturbed 
harmonic oscillator: 
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The value  in (7) is defined 
as
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where )(tLl
n  is the Laguerre polynomial,  is the fit-

ting parameter, l  is the angular momentum. The 
following recursion relations can be obtained

ω
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It is important to take the full symmetry of the Ham-

iltonian (4) into account for two reasons: 1) the matrix 
lNHlN ,ˆ, ′′  can be divided into submatrices, corre-

sponding to the different irreducible representations of 
the symmetry group of the Hamiltonian (4) (that allows 
to calculate the eigenvalues of each type separately); 
2) it is necessary to distinguish energy levels of each 
symmetry type to perform spectral statistical analysis 
correctly [7]. 

The full symmetry of the Hamiltonian (4) is the 
-point group, which is the symmetry group of an 

equilateral triangle. It has three irreducible representa-
tions: , , and . The eigenvalues corresponding 
to  and  symmetries are generally non-
degenerate, while those of  symmetry are doubly 
degenerate. Basis functions (6) are classified according 
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to the irreducible representations of the -point 
group as shown in Table 2. 
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Table 2. Classification of the basis functions (5) 
ccording to the irreducible representations of the

-point group 
a  

vC3

jSymmetry  l  
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Using the orthogonality relation 

 together with the re-

cursion relations (9), (10) we get the explicit formula 
for matrix elements  is the Kronecker delta symbol 
and  depending on the type of the symmetry (cf. 
Table 2). 
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where 

  (12) 

 

In practical calculations the elements of the Hamil-
tonian matrix were ordered by the value of N , 

. We calculated matrix elements 
choosing , except for -symmetry in the 
region , where calculations were performed for 

. The matrix 

max...,,1,0 NN =
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C
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250 E

lN ,HlN ˆ, ′′  is banded with 

the band , where m  depends on the quantum 
number  as 
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where  is dimension of the Hamiltonian ma-
trix for particular . 

)(dim NH
N

Diagonalization of the Hamiltonian matrix 
lNHlN ,ˆ, ′′  was performed using the reduction to the 

tridiagonal form of symmetric band matrix via Jacobi 
rotations [8, p. 244] followed by the procedure for cal-
culating specific eigenvalues in given interval of sym-
metric tridiagonal matrix via the method of bisection [8, 
p. 367]. We obtained 5334 energy levels of -type, 

5208 levels of -type in each energy region consid-
ered, and we obtained 10542 levels of -type in the 
regions  and , and 5192 levels in the region . 
The accuracy of the results was examined by changing 
the size of the basis and by varying the fitting parameter 

 in expressions (8) and (11). The energy levels, reli-
able with an accuracy  ( s  is the mini-
mum spacing between nearest-neighbor levels) were 
accepted for further statistical analyses. The error  is 
defined as 
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where ,  are the i-th energy levels, 
obtained via the diagonalization of Hamiltonian matri-
ces computed for  and  respec-
tively. 

( )max ( max
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4. STATISTICAL PROPERTIES  
OF SPECTRAL FLUCTUATIONS 

Spectral statistical analysis is applied to spectral 
fluctuations, i.e. spectrum deviations from its smooth 
(locally uniform) behavior [1,9]. The distribution func-
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tion (the staircase function)  for a discrete spec-
trum can be written as 

)(EN

)()()( ENENEN fluctav += , (15) 

where  is the average part and  is the 
fluctuation part of the staircase function. Since the 
smooth behavior is not universal, it is removed by the 
spectrum “unfolding” procedure via the mapping 

)(EN av )(EN fluct

)(21 navn ENx =+ . (16) 
We calculated  in terms of the few lower-

order spectral moments by using a truncated Gram-
Charlier expansion [10] for the distribution function 

 of the normalized quantity  
(  is the expectation,  is the standard deviation of 
the spectrum ). 
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The following statistical properties of the system (4) 
were investigated: 1) the distribution  of spac-
ing 

)(sp
s  between nearest-neighbor levels of the spectrum; 

and 2) the Dyson’s -statistic which measures the 
spectral rigidity and is defined by 
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The following theoretical predictions are 

known [1,2]:  
(1)   (Poisson distribution) and 

 for integrable classical systems; 
)exp()( ssp −=

15/~)(3 LLΔ

(2)  ( )2exp)( BsAssp −≈ β  and  
for chaotic systems. Particularly, 

δ+γΔ LL ln~)(3

( )4/exp2)( 2sssp π−π≈  (Wigner distribution) and 
00695.0ln1~)(3 −πΔ LL  for systems with quantum 

spectrum well described by random matrix theory, 
namely by statistical properties of the Gaussian or-
thogonal ensemble (GOE); 

(3)  In case of a generic system where regular and 
chaotic trajectories coexist, distribution  may well 
be fitted by Brody distribution 
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Note that with   approaches Poisson dis-

tribution, and with   approaches Wigner 
distribution. 
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5. RESULTS AND CONCLUSIONS 
Since the results obtained for different symmetry 

types are qualitatively the same, only the results for 
E -symmetry type are given. The solid line on pictures 
below is used to display the predictions for regular sys-
tem, the dashed line is for the predictions for chaotic 
system. 

As can be seen from Fig. 3, regularity of the classi-
cal motion in the  region is approved by the statistical 

properties of the fluctuations of spectra. Namely,  
is close to the Poissonian distribution, while 

 in the range , and  
“saturates” after that – i.e. all the classical trajectories 
complement to the value of , and  moves 
away from straight line and fluctuates about some value 

, which is not universal. Figs. 4 and 5 present result 
the results for mixed RC region. 
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Fig. 3.  -type. Total number of levels – 701 (lev-

els from 5000 to 5700, , ), 
number of bins in the histogram – 15;  is the 
ensemble average (levels from 4950 to 5650, from 5000 
to 5700, and from 5050 to 5750) 
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Fig. 4.  -type. Total number of levels – 501 (lev-

els from 1380 to 1880, , ), 
number of bins in the histogram – 12;  is the 
ensemble average (levels from 1320 to 1820, from 1350 
to 1850, and from 1380 to 1880). Dash-dotted line is 
the Brody distribution (19)-(20) with  

1E
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Fig. 5.  -type. Total number of levels – 501 (lev-

els from 1680 to 2180, , ), 
number of bins in the histogram – 12;  is the 
ensemble average (levels from 1620 to 2120, from 1650 
to 2150, and from 1680 to 2180). Dash-dotted line is 
the Brody distribution (22) with  
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The more the levels in the analysis get close to the 
saddle energy V  (particularly, V ), the s 0703125.122=s
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СВОЙСТВА СПЕКТРА ДВУМЕРНОГО МНОГОЯМНОГО С3V СИММЕТРИЧНОГО 

ГАМИЛЬТОНИАНА 

Н.А. Чеканов, Е.В. Шевченко 

Рассмотрена квантовая гамильтонова система, поверхность потенциальной энергии которой имеет четы-
ре локальных минимума и которая в классическом пределе допускает в некотором интервале энергий сме-
шанное состояние. Для данной системы методом диагонализации вычислен энергетический спектр, распре-
деление расстояний между соседними уровнями и Δ3-жесткость Дайсона. Полученные результаты сопостав-
лены с теоретическими предсказаниями для регулярных, хаотических систем и систем, в которых регуляр-
ные и хаотические траектории сосуществуют. 

 
 
ВЛАСТИВОСТІ СПЕКТРУ ДВОВИМІРНОГО БАГАТОЯМНОГО С3V СИМЕТРИЧНОГО  

ГАМIЛЬТОНИАНУ 

М.О. Чєканов, Є.В. Шевченко 

Розглянуто квантову гамільтонову систему, поверхня потенційної енергії якої має чотири локальних 
мінімуми, і яка в класичній межі допускає в деякому інтервалі енергій змішаний стан. Для даної системи 
методом диагоналізації обчислений енергетичний спектр, розподіл відстаней між сусідніми рівнями й 
Δ3-жорсткість Дайсона. Отримані результати зіставлені з теоретичними передбаченнями для регулярних, 
хаотичних систем і систем, в яких регулярні й хаотичні траєкторії співіснують. 
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