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Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system
shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion
coexist in different local minima. Three regimes of motion — regular ( R ), mixed state ( RC ), and chaotic (C ) — are
considered. For each energy region the spectrum is calculated by direct diagonalization in polar coordinates, the
eigenstates are classified according to the irreducible representations of the Cj, -point group, and the spectral

statistical properties are analyzed and compared to the theoretical predictions for integrable, chaotic and generic

(neither regular nor chaotic) systems.
PACS: 05.45-a, 05.45.Ac

1. INTRODUCTION

Searching for quantum manifestations of classical
chaos has been the subject of series of investigations for
the past decades [e.g. 1, 2]. The one way to do it is to
analyze statistical properties of spectrum. Such investi-
gations have been done for model systems or systems
with simple topology [e.g. 3, 4]. The present research is
concerned to the two-dimensional multiwell system
with the Hamiltonian in the form

H=%(p§+p§)+V(x,y),
V(x,y)
=%(x2 +y2)+b(x2y—%y3j+c(x2 +y2)2' (1b)

The system (1) describes surface quadrupole oscilla-
tions of a spherical drop of some matter. This system
has been previously studied numerically by
V. Berezovoj et al. [5]. We present here research con-
cerning the so called “exact” eigenvalues, derived via
the diagonalization procedure.

The number of critical points of the potential (1b)

(1a)

depends on the parameter W = b? / c. We consider the

case W =18, so that the system (1) is multiwell with
four local minima and three saddle points (cf. Fig. 1).
All the minima are of the value V;, =0.

min
For the system (1) the transition regularity-chaos-
regularity has been shown [6]. That means that the sys-
tem (1) moves regularly in the region E < E ., ; invari-

ant tori are destroyed as £ approaches E_; and the
motion becomes chaotic in the region £, < E <E_.,;
in the region E > E_., the regularity of the motion is

recovered. In particular, for the case W =18 critical
energies are found to be E_.. =V, /2 for the central

minima and E_.; =V for the peripheral minima. Thus
in the region V,/2<E <V, regular and irregular re-

gimes of motion coexist in different local minima. Such
a phenomenon is called mixed state.
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Fig. 1. Level lines of the potential part of the Hamil-
tonian (1) with b=0.048, c=0.000128
(W:b2/0=18). Dashed lines denote the zero Gaus-

sian curvature

We investigated the motion of the system (1) in
three different regions: regular (R) with energies
E <V, /2, mixed (RC) with energies in the range

Vi/2<E<V, and chaotic(C) with Vi <E<E
Parameters b and ¢ were chosen independently for

each energy region in order to obtain enough energy
levels for further statistical analysis (cf. Table 1).

crl2:

Table 1. The choice of parameters b and c for investi-
gating system (1) in energy regions R, RC, C

Parameters
Type of
motion b c Een E; Eer
R 0.018 | 0.000018 | 385.8 | 868.1 | 1617451.8
RC 0.048 | 0.000128 | 54.3 | 122.1 227454.2
C 0.42 0.0098 0.7 1.5 2970.8

2. CLASSICAL ORBITS

The one of the commonly used ways for classifying
the classical motion of the system is computation of the
Poincaré surface of section pictures.

To obtain surface of section pictures shown on
Fig. 2 we used the classical equations of motion for the
Hamiltonian (1)
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X= x—2bxy—4cx(x2 +y2), 2)

(€))

and the fourth-order Runge-Kutta step method for com-
puting the classical trajectories.

§=—y—b(x* - y?)—dey(x* + y?)

Fig. 2,a. Type of motion R. E=175.0. Shown is
the surface of section for central (left) and peripheral
(right) local minima
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Fig. 2,b. Type of motion RC .E =80.0. Shown is
the surface of section for central (left) and peripheral
(right) local minima

motion

of

Fig. 2,c (left). Type
E=V,=122.0703125

Fig. 2,d (vight). Type of motion C. E =80.0

Fig. 2 demonstrates the type of classical motion in
three energy regions of interest (R, RC , and C). Par-
ticularly, mixed state is seen on Fig. 2b, 2c.

3. COMPUTATION OF QUANTUM ENERGY
SPECTRA

For the purpose of quantum mechanical calculations
we consider the Hamiltonian (1) in polar form

2 2 3
L P S B SN VA
2o r?og? 3

In order to calculate the quantum energy spectra the
eigenvalue problem

6))

should be solved. Eigenvalues of the Hamiltonian (4)
were calculated by diagonalizing the Hamiltonian ma-

trix <N',l"I:I‘N,l>. The basis functions |N,l> were

H(r,@) () = Ey(r,)

chosen in the form
~ 1 ok
uy,(r,p) = E(’/‘N,l (r, @)+ jupy (7, (P)), (6)

where uy ;(r,¢) are basis functions of the unperturbed

harmonic oscillator:

1 —ilp .
un(r,@)=—==e ""R(N,l), j=11. (7
N,I \/%
The value R(N,I) in (7) is defined
as
N-|/ N +|l
R(N,l)=\/2wiN\/[ | |]!/[ + |J!
2 2
®)

/ 2
x (\/ar) ‘L‘;‘/_l (@r?)e™®” /2,
2

where L‘,l,‘ (¢) is the Laguerre polynomial, ® is the fit-

ting parameter, / is the angular momentum. The
following recursion relations can be obtained:

FR(N,I) = i{w/N;lR(N—l,l—l)

+ ,/N_THZR(NJF 1,/ - 1)}, 9)
!R(N,1) = —i{, /NT_IR(N ~LI+1)
+ ,/N“LT”ZR(N LI+ 1)}. (10)

It is important to take the full symmetry of the Ham-
iltonian (4) into account for two reasons: 1) the matrix

<N "l "I:I ‘N , l> can be divided into submatrices, corre-

sponding to the different irreducible representations of
the symmetry group of the Hamiltonian (4) (that allows
to calculate the eigenvalues of each type separately);
2) it is necessary to distinguish energy levels of each
symmetry type to perform spectral statistical analysis
correctly [7].

The full symmetry of the Hamiltonian (4) is the
C;,, -point group, which is the symmetry group of an

equilateral triangle. It has three irreducible representa-
tions: A4y, 4y, and E . The eigenvalues corresponding
to A4 and A4,

degenerate, while those of E symmetry are doubly
degenerate. Basis functions (6) are classified according

symmetries are generally non-
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to the irreducible representations of the Cj, -point
group as shown in Table 2.
Table 2. Classification of the basis functions (35)

according to the irreducible representations of the
C3,, -point group

Symmetry J l
A4 1 [ =0 (mod3)
[ =0 (mod3),
4y 0 { ( )
>0
E, 1
E: [ # 0 (mod 3)
E, -1

b 1

<

N.1)=o(N +1)8 158y ~

602 2@0+8r0)/2

Using the relation

J.: R(N",)R(N,Drdr =3, together with the re-

cursion relations (9), (10) we get the explicit formula
for matrix elements$,,, is the Kronecker delta symbol

orthogonality

and j==1 depending on the type of the symmetry (cf.
Table 2).

{ (j51'(1—3) +0/(<143) )F(N, 1))

C
+06,43)F(N,-1) }+51'1 5
(O]

{ %\/(N+ DN =1)(N +1=2)(N =1 =2)8 yr(x—-ay + N-[(N + (N =1)3 yr(n—2)

2
+(;N2 —12+3N+2]8NN +(N +2) /(N +1+2)(N =1 +2)8 y(n+2) +l\/(N+l+2)(N—l+2)

51’1{ AIN+D(N =18 y1(v-2) + (N +1)0 yiy

[N +1+4)(N =1 +4)8 yr(n+4) }+

+%\/(N+l+2)(N—l+ 2)8 nr(v+2) }

where

F(N,I)= J

(N+l)(N+l—2)(N+l—4)5
N

(11)

3 +3
8 (N=3) \/

(N +D(N 1 +2)(N +1-2)

2 N'(N-1)

(12)

(N—1+2)(N—1+4)N—-1+6)

+3\/(N+l)(N—l;r2)(N—l+4)5N,(N+l) +\/

In practical calculations the elements of the Hamil-
tonian matrix were ordered by the value of N,
N=0,1,..,Npax - We calculated matrix elements

choosing N, =250, except for E -symmetry in the

region C, where calculations were performed for
Npax =175 . The matrix <N’,l"I:I‘N,l> is banded with

the band 2m+1, where m depends on the quantum
number N as

m(N) = {dim g (N), N<4,

. . 13)
dim g (N)—dim g (N -4)+1,

N=z4,

where dim g (N) is dimension of the Hamiltonian ma-

trix for particular N .
Diagonalization

<N’,l’

tridiagonal form of symmetric band matrix via Jacobi
rotations [8, p. 244] followed by the procedure for cal-
culating specific eigenvalues in given interval of sym-
metric tridiagonal matrix via the method of bisection [8,
p. 367]. We obtained 5334 energy levels of A -type,

of

s > was performed using the reduction to the

the Hamiltonian matrix
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O A .
2 N'(N+3)

[
5208 levels of A, -type in each energy region consid-

ered, and we obtained 10542 levels of E|-type in the

regions R and RC, and 5192 levels in the region C.
The accuracy of the results was examined by changing
the size of the basis and by varying the fitting parameter
o in expressions (8) and (11). The energy levels, reli-
able with an accuracy A <O0,1-s:, (Spi, 1S the mini-

mum spacing between nearest-neighbor levels) were
accepted for further statistical analyses. The error A is

defined as
A= max{ (Nmax) _ai(Nmax_l)‘ } ,

1

(14)

where al-(Nma") , al-(NmZlX 1) are the i-th energy levels,

obtained via the diagonalization of Hamiltonian matri-
ces computed for N =N and N = N, —1 respec-

max max

tively.
4. STATISTICAL PROPERTIES
OF SPECTRAL FLUCTUATIONS
Spectral statistical analysis is applied to spectral

fluctuations, i.e. spectrum deviations from its smooth
(locally uniform) behavior [1,9]. The distribution func-



tion (the staircase function) N(E) for a discrete spec-
trum can be written as

N(E) = Ngy(E)+ Nyt (E), (15)
where N, (E) is the average part and N g, (E) is the
fluctuation part of the staircase function. Since the
smooth behavior is not universal, it is removed by the
spectrum “unfolding” procedure via the mapping

X +1/2 = Nay(Ep) - (16)

We calculated N, (E) in terms of the few lower-
order spectral moments by using a truncated Gram-
Charlier expansion [10] for the distribution function
F(x) of the normalized quantity X=(E-mg)/c
(mg is the expectation, ¢ is the standard deviation of
the spectrum {E; }).

The following statistical properties of the system (4)
were investigated: 1) the distribution p(s) of spac-

ing € between nearest-neighbor levels of the spectrum;
and 2)the Dyson’s Aj-statistic which measures the

spectral rigidity and is defined by
1 . (o+L 2
Aj(o; L) =—min N(X)—(Ax+B)[“dx, (17
3( )LABJQ [NOO - (Ax+B)] (17)

(18)

predictions  are

A3(L) = (A3(c, L))

The following
known [1,2]:

(1) p(s)=exp(-9)
Az(L)~ L/15 for integrable classical systems;

) p(s)~ AsP exp(— Bsz) and Ay(L)~yInL+8
Particularly,

theoretical

(Poisson distribution) and

for chaotic systems.

p(s) ~ ts/2 exp (— ns’/ 4) (Wigner distribution) and
A3(L)~1/nlnL —0.00695 for systems with quantum

spectrum well described by random matrix theory,
namely by statistical properties of the Gaussian or-
thogonal ensemble (GOE);

(3) In case of a generic system where regular and
chaotic trajectories coexist, distribution p(s) may well

be fitted by Brody distribution

Pq(s) = as? exp(— B s”q), (19)

a=(+ap. p=[r@ra/a+a)]* o

Note that with q—> 0 pq(S) approaches Poisson dis-

tribution, and with q—>1 pPq(S) approaches Wigner

distribution.

5. RESULTS AND CONCLUSIONS

Since the results obtained for different symmetry
types are qualitatively the same, only the results for
E -symmetry type are given. The solid line on pictures
below is used to display the predictions for regular sys-
tem, the dashed line is for the predictions for chaotic
system.

As can be seen from Fig. 3, regularity of the classi-
cal motion in the R region is approved by the statistical

properties of the fluctuations of spectra. Namely, p(s)
is close to the Poissonian distribution, while
Az(L)~L/15 in the range 0<L<L and A5(L)
“saturates” after that — i.e. all the classical trajectories
complement to the value of Az(L), and A3(L) moves

max °

away from straight line and fluctuates about some value
A, , which is not universal. Figs. 4 and 5 present result

the results for mixed RC region.

REGION R

(b)

P(s)

1.0

Ag(L)

Fig. 3. E,-type. Total number of levels — 701 (lev-
els from 5000 to 5700, Esqgg ~171.7, Es799 ~183.2),
number of bins in the histogram — 15; A;(L) is the

ensemble average (levels from 4950 to 5650, from 5000
to 5700, and from 5050 to 5750)

REGION RC

(b)

1.0

P(s)
Az(L)

Fig. 4. E,-type. Total number of levels — 501 (lev-
els from 1380 to 1880, E1380 ~87.7, E1880 leIS),
number of bins in the histogram — 12; A;(L) is the

ensemble average (levels from 1320 to 1820, from 1350
to 1850, and from 1380 to 1880). Dash-dotted line is
the Brody distribution (19)-(20) with q ~ 0.6262
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Fig. 5. E, -type. Total number of levels — 501 (lev-
eIS from 1680 to 2180, E1680 ~ 962, EZ]SO ~ 1087),
number of bins in the histogram — 12; A;(L) is the

ensemble average (levels from 1620 to 2120, from 1650
to 2150, and from 1680 to 2180). Dash-dotted line is
the Brody distribution (22) with g~ 0.7858

The more the levels in the analysis get close to the
saddle energy Vg (particularly, Vg =122.0703125), the

273



more the properties of p(s) and A3(L) get close to the
theoretical predictions for chaotic systems. Parameter q

in Brody distribution (19)-(20) in this case tends to
unity.

As it is seen from Fig. 6 the spectrum in the region C
is well described by the properties of Gaussian orthogonal
ensemble (GOE) of random matrices what goes along
with the theoretical predictions for chaotic systems.

REGION C

3.0 (b)

P(s)
Ag(L)

e T T T
Lo

Fig. 6. E; -type. Total number of levels — 301 (lev-
els from 490 to 790, E49g =58.3, E799 = 79.9), num-
ber of bins in the histogram — 12; A;(L) isthe ensem-

ble average (levels from 440 to 740, from 465 to 765,
and from 490 to 790)

In present investigation we were searching for quan-
tum signatures of classical chaos in a system with non-
trivial topology of the potential. We found that statisti-
cal properties of spectra of the system with complex
topology of the potential such as system (1) are in
agreement with the theory developed for integrable,
chaotic and generic (neither regular nor chaotic) sys-
tems.
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CBOMCTBA CHEKTPA JIJBYMEPHOI'O MHOI'OSIMHOI'O C3V CUMMETPAYHOI'O
IFAMNWJIBTOHUAHA

H.A. Yekanos, E.B. Illeéuenxo

PaccmoTpeHa KBaHTOBasi TaMIJIBTOHOBA CUCTEMA, TOBEPXHOCTH MOTEHIUAIBHON YHEPTUU KOTOPOM UMEET YEThI-
pe JOKaIbHBIX MUHAMYMa U KOTOpasi B KJIACCHYECKOM Mpeese JOMyCKaeT B HEKOTOPOM MHTEpBale SHEPIuil cMe-
LIaHHOE COCTOSIHUE. [/ TaHHON CHCTEMbI METOJIOM JMarOHaIN3al[MK BBIYMCIECH SHEPTeTUUECKHH CIIEKTp, pacipe-
JIeJIeHHE pacCTOSIHUN MEXy COCETHUMHU YPOBHIMHU U Ajz-xkecTkocTh [laiicona. [lomydeHHble pe3yabTaThl CONOCTaB-
JIEHBI ¢ TEOPETUUECKUMH NPEACKA3aHUAMU JUIS PETYJISIPHBIX, XaOTHYECKUX CUCTEM U CUCTEM, B KOTOPBIX PEryIsp-
HBIE M XaOTHYECKHE TPACKTOPHH COCYIECTBYIOT.

BJIACTHUBOCTI CIIEKTPY IBOBUMIPHOI'O BAI'ATOAMHOI'O C3V CUMETPUYHOI'O
IF'AMUUIBTOHUAHY

M.O. Uekanos, €.B. Illeguenxo

Po3risiHyTO KBaHTOBY T'aMiIbTOHOBY CHCTEMY, MMOBEPXHS MOTEHIIMHOI €Hepril sIKol Mae YOTHUPH JIOKaJbHUX
MIiHIMYMH, 1 SKa B KJIACHYHIN MeXi JOMyCKae B JEIKOMY iHTEpBali eHepriii 3mimanuii crad. g manoi cucremu
METOJIOM JMaroHamizaiii OOYHMCIeHHH EHEePreTHYHUI CHEeKTp, PO3MOLT BIICTaHEW MK CYCIIHIMH DIBHAMH U
As-xopcTkicte JladicoHa. OTpuMaHi pe3ynbTaTd 3iCTaBieHI 3 TEOPETUYHHMH NepeadadeHHIMH IS PETYISpHHX,
XaOTHYHUX CHCTEM 1 CUCTEM, B SIKHX PETYJISIpHI i XaOTHYHI TPAEKTOPIT CITIBICHYIOTb.
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