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The results of the theoretical and experimental investigations of excitation of oscillations by flows of charged 
particles and its particles dynamics are represented at their motion as in a periodic potential and in a field of a plane 
electromagnetic wave and in periodically inhomogeneous medium. The special attention is given to research of non-
relativistic motion. It was found conditions that under their fulfilling the maximum of radiation of nonrelativistic 
oscillators fall at high numbers of oscillators harmonics. Linear stage of beam instability is analytically studied, the 
increments of instability are determined. Nonlinear self-consistent theory of electromagnetic waves excitation by 
flows of the charged particles is developed. By the numerical methods are investigated linear and non-linear stage of 
excitation of a high-frequency wave with frequency corresponding to high number harmonics of external wave. Ca-
pability of effective excitation of harmonics by ensemble of nonrelativistic oscillators in SHF range and transforma-
tion of energy of external 10 cm of radiation to energy of ultraviolet radiation is shown experimentally. 

PACS: 05.45, 41.60.-m, 02.60.Cb, 29.27.Bd 
 

1. INTRODUCTION 
It is known that in vacuum the oscillator effectively 

radiate high numbers of harmonics only in the case that 
it has a large energy. So, for synchrotron radiation the 
maximum of radiation is obtained at harmonics with 
number [1]. Many authors (see, for example, 
[2-6] and the literature therin) studied the radiation of 
relativistic particles in periodically inhomogeneous me-
dium. The interest to such radiation is conditioned by 
that due to Doppler effect there is a possibility to excite 
effectively the short-wave radiation .  

3~ γν

2γλ /~ d
The short-wave radiation can be exited not only rela-

tivistic particles. It is possible one more mechanism of 
generating of short-wave radiation by nonrelativistic os-
cillators — excitation of high number harmonics. For this 
purpose it is necessary, that the motion of nonrelativistic 
oscillators occurred in periodic inhomogeneous medium.  

This mechanism can be utilized for collectively in-
duced excitation of X-radiation in crystals. Really, to 
create an ensemble of nonrelativistic oscillators it is 
easier, than an ensemble relativistic. Such ensemble can 
be produced with the help of external radiation, which 
one transforms electrons of crystals into oscillators. 
Density of such oscillators is limited only to density of a 
solid. Than more the density of individual radiators, the 
more effectively and faster develops process of induced 
radiation. Keeping in mind peculiarities of the radiation 
mechanism which we are investigated, (see below and 
articles [7-10]), it is possible to expect on creation of 
sources of an intensive coherent X-radiation with a 
wavelength .  dλ ≤

In the given paper theoretical and experimental in-
vestigations of excitation of harmonics by ensembles of 
oscillators — charged particles driving by an external 
periodic in time electrical field, which moves in the 
field of an external periodic in space potential or in pe-
riodically inhomogeneous medium are carried out. Ana-
lytical and numerical analysis of a full self-consistent 
set of equations are performed. The analytical results 

are in the good agreement with results of the numerical 
analysis and qualitatively well be agreed the data of 
experiment (see, for example [11]). 

2. RADIATION OF A PARTICLE  
MOVING IN PERIODIC POTENTIAL 

In the most of nonlinear Hamilton systems, which 
describe the dynamics of particles, it is possible to sort 
regions of phase space where trajectories have regular 
character and where they are stochastic. We are inter-
ested with those particles, which are moving regularly, 
only they can irradiate intensive collective coherent 
radiation. Therefore in further we shall orient, first of 
all, by particles with regular dynamics. The influences 
of stochastic particles at this stage of analysis we'll be 
neglect, although we will make estimate their number 
and minimize it. 

Let charged partic external periodic in 
time electrical field E t and in the 
field of periodic potential with amplitude 

.  

le moves in 
)(( ) cosext extE tω= ⋅ ⋅

( )zκ ⋅0( ) cosU z U g= + ⋅
For simplicity we’ll consider that motion occur only 

along z-axis. Then, introduce dimensionless coordi-
nates, we we’ll get equations of motion of particles in 
these fields 
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At sufficiently small intensities of these fields it is pos-
sible to consider nonrelativistic motion of particles in 
such fields.  

( ) (2
0 sin cos κζ ζ ε −+Ω ⋅ = − ⋅ Ω ⋅ )1 τ

)

 (2) 

While passing into moving coordinate frame 
 equation (2) takes form (2 1cosκ κζ ξ ε τ−= + ⋅Ω ⋅ Ω ⋅

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 265-269. 265 



( ) ( )2
0 sin

2n
n

J n κ
πξ µ ξ τ

∞⋅⋅
−

=−∞

= Ω ⋅ ⋅ − ⋅Ω ⋅ + ⋅


∑ 1 n 



  (3) 

where  is the Bessel function, .  ( )nJ µ 2
κµ ε= ⋅Ω

Equation (3) describe changing of “particle” phase 
, at which many of waves acts on. Amplitudes of 

those waves  are increasing with growing of 
harmonic’s number and in region n  have a local 
maximum. Amplitudes of harmonics with number 

 decrease exponentially [12]. 
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( )2
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( ) ( ) ( ) ( )1/ 3 1/3 42/ 2/ (1/ 2 )nJ n Ai z n z ςµ −∼ ∼ eπ ,  (4) 

where: .  ( )1/ 3 3 / 22 / ( ), (2 / 3)z n n zµ ς= − =
Thus, it is possible to expect, that at motion of the 

particles in external periodic in time electrical field and 
in field of the periodic potential, radiation field will con-
tain harmonics with frequencies up to . extnω

Really, considering  ( ), the solu-
tion of the equation (2) can be found by a method suc-
cessive approximations:  
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1 Presence of space-periodic potential with amplitude 
of  ( ) (Fig. 1) give rise to 
originating multifrequency motion. Passing to variable 

 it is visible, that under the ac-
tion of the potential the particle performs high-frequency 
oscillations (Fig. 1c), which results in the appearance of 
external field harmonics both in spectrum of speed, and 
in spectrum of power of radiated field (Fig. 1d). 

2
0 0.025εΩ =

( ) ( )pβ τ β τ ε= −

0.0025 extd λ= ⋅

sin( )κ τΩ

From this expression it is visible, that the velocity of 
particles and its coordinates are contained odd harmon-
ics of the external electrical field. 

Radiation intensity into space angle unit d  with 
frequency  is equal to [13]: 

ο
extnω ω=
2 2

02n n
cdI H R dο
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where , and Fourier component of vector 

potential is defined by 
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here , ,  are particle radius-vector 

and velocity,  is the wave vector,  is the distance to 
point of observation. It is easy to see that in our case of 
one-dimensional motion the radiation has dipole nature. 

2 / extT π ω=

k
G

( )r t ( )v t

0R

3. RADIATION SPECTRUM OF PARTICLE 
AT MOTION IN PERIODIC POTENTIAL 
In the common case, it isn't seemed possible to get 

the analytical dependencies of spectral density from 
parameters of external fields. 

The investigation of spectral characteristic of fields 
radiated by charged particle moving in external electri-
cal field and in the field of potential, was carried out by 
the numerical solution of equations (2) and substitution 
of its solutions into (7), (6). 

For a case of nonrelativistic motion the amplitude of 
an external electrical field is equal to Eext=104 V/cm. 
Frequency of the external electromagnetic field was 
fixed. 

Investigation was carried out for two value of poten-
tial period d = 0.0025 λext and d = 0.00125 λ. Value of 
potential amplitude varied within g E . 
Initial conditions for particles were equal to 

( ) 10 0.125 extκ
−= ÷

( ) 00ζ τ ζ= = ; . For that the right-hand of 

(2) had been presented as: . 

( )0 0ζ τ = =

( )1
κε τ−⋅ Ω ⋅cos

Calculation accuracy was controlled with the help of 
integral of motion. 

( ) ( )( ) ( ) ( )
2

2 1
0 0 0

cos cos cos ,
2n kI dτβ ζ ζ ε β τ τ−= −Ω ⋅ − + Ω ⋅∫ τ

 

its absolute values was less than 1010I −< . 
In absence of the periodic potential influence 

 the equation (3) has a simple analytical solu-
tion. Motion of the particle is periodic with the fre-
quency , and spectrum of its speed and spec-
trum of the radiation field are linear. 

2
0 0.0Ω =

extω ω=

 
Fig. 1,a. Phase space Fig. 1,b. Spectrum of velo-

city 

 
Fig. 1,c. Influence of po-
tential on particle trajec-

tory 

Fig. 1,d. Spectrum of radi-
ated field 

Relative maximum fall at harmonic with number n=11, 
that in order of magnitude is in very good accord as 
position of relative maximum n ~ , and 
with condition of radiation . 

2 12kµ ε −= ⋅Ω ≈
λ β/d=

With growing of amplitude of periodic potential 
( ) (Fig. 2) occurs the 

growing of harmonics amplitudes in spectrum of veloc-
ity and its enriching at intermediate frequencies. Ampli-
tudes of high-frequency oscillations grow up at the in-
fluence of periodic potential. Amplitudes of all harmon-
ics in spectrum of radiated field are growing up too. 
Kind of the spectrum practically has no changes.  

2
0 0.075 εΩ = ⋅ 0.0025 extd λ= ⋅
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Fig. 2,a. Phase space Fig. 2,b. Spectrum of velocity 

 
Fig. 2,c. Influence of po-
tential on particle trajec-

tory 

Fig. 2,d. Spectrum of radi-
ated field 

For potential amplitude Ω =  
( ) (Fig.3) occur qualitative changes of 
phase plane – the particle motion isn’t localized in lim-
ited region of space and represented series of oscilla-
tions near locally stabled state. Spectrum of particle 
velocity and, consequently, spectrum of radiated field 
lot enriching at all of intermediate frequencies. 

2
0 0.125 ε⋅

0.0025 extd λ= ⋅

  
Fig. 3,a. Phase space Fig. 3,b. Spectrum of velocity 

 
Fig. 3,c. Influence of po-
tential on particle trajec-

tory 

Fig. 3,d. Spectrum of radiated 
field 

Further growing of potential amplitude leads to ap-
pearance of non-regular motion of particle hence the 
spectrum of radiated field also becomes non-regular. 

For a potential with period d  the 
number of harmonics, both in the spectrum of velocity 
and radiated field, are proportional to parameter .  

31.25 10 extλ−= ⋅ ⋅

µ

  
Fig. 4,a. Phase space Fig. 4,b. Spectrum of velocity 

 
Fig. 4,c. Influence of po-
tential on particle trajec-

tory 

Fig. 4,d. Spectrum of radiated 
field 

At amplitudes of potential Ω = (Fig. 4) the 
motion of particle is quasiregular. Spectrum of velocity 
and spectrum of radiated field have line structure. The 
local maximum of spectrum fall on harmonics with 
number n

2
0 0.07 ε⋅

mач =23, that is in very good accord as position 

of relative maximum n ~ , and with 
condition of radiation .  
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4. SPECTRUM OF OSCILLATOR RADIATION 
AT MOTION IN PERIODICALLY 

INHOMOGENEOUS MEDIUM 
Let us consider the problem of the radiation of an 

oscillator in a periodically heterogeneous medium. We 
will describe heterogeneous medium, where the oscilla-
tor moves, by the permeability in the form: 

0
1

n

i
ε ε ε

=
= +∑ ,  (8) 

where  is the vector of the reciprocal lattice 
of the heterogeneous medium. We shell restrict below 
by the case  n , when the electromagnetic field ef-
fectively interacts with one family of crystallographic 
planes only,  i.e. when only two wave diffraction is pos-
sible. A charged particle moves in this medium. The 
trajectory of the particle can be described by the expres-
sion: 

1,iq κ<<

1=

i

trtVr Ω+= sin00 . (9) 
For non-relativistic p rticles from the conservation lows 
it follows that , i.e. radiation 
is like a ‘long-wave’. Consider the case of , 
where  is the oscillators velocity. Using Maxwell 
equations we find for radiation losses of nonrelativistic 
oscillator [7]  

ω κ
v zκ

v

2 2 2 3( ) sin
3 2

eW q d
t c

β∂ θ
∂

⊥Ω ⋅
= ⋅  (10) 

where  is the ratio of oscillating velocity to 

velocity of light, k r . 
The dependence of radiation power from harmonic 
number  is most significant. It is easy to understand 
that in this case of periodic medium efficiency of radia-
tion increase with grow of the harmonic number. How-
ever, for radiation losses of oscillator moving in vacuum 
(see, for example, [1])  

0 /r cβ⊥ =

n

1 k κ= ±

2 2
2

1 0n

w e n J d
t c

π∂ θ
∂

∞

=

Ω
= ∑ ∫   (11) θ

this effect is impossible because . But as it 
follows from equation (10), it is very easy to satisfy 
conditions necessary for radiation of oscillator in the 
presence of medium. 

1

5. RADIATION OF FLOW  
OF OSCILLATORS 

The fullest description of self-consistent process of 
interaction of charged particles with an exciting field 
implies the simultaneous solution of Maxwell equations 
for the electromagnetic field and equations of charged 
particles’ motion in exited fields 

rot ,

sin ,ext ext

B c E
t

dp eeE v B eE t e U
dt c

∂
∂

ω

= −

= + × + − ∇

 (12) 
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It is known, that in periodic medium solution for exited 
wave sent in such form:  is convenient to pre

z+Re ( )exp( )lE E t ikx ilκ= ∑ . (13) 
Substitute expressions for fields (13) in the set of equa-
tions (12). Averaging the obtained equations on a space 
phase of disturbance, we’ll obtain the set of equations 
for finding fields and characteristics of oscillators:  
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, ,  are the 
mass, charge and density of oscillators. 
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5.1. LINEAR APPROXIMATION.  
DISPERSION EQUATION 

Let's investigate a set of equations (14) on stability in 
linear approximation. For these purposes we’ll present the 
d pendence of fields to time in (13) as: 

. Also we’ll consider only nonrela-
tivistic oscillators for case of periodically inhomogeneous 
medium with Ω = .  

e
ω

)nΩ

0( ) exp( )lE t i tε= −

2
0 0

Executing necessary transformations, we’ll obtain a 
set of linear algebraic equations. The parity to zero of a 
determinant of this algebraic system represents a disper-
sion equation. Besides allowing, that the maximum of 
an increment of instability is reached, when the fre-
quency of excited waves meet to resonant conditions, 
we in a general dispersion equation shall keep only 
resonant members. . In these conditions dis-
persion equation gains enough simple view:  

extnω ω≈

2 2 2 2
0 1 2( )( )( ) (qω ω ω ω ω ω ω ω− − − = − , (15) 
2 2 2

0 1 2, ,b b nk c n J n Jω ω ω ω ω= + = Ω− = Ω+ bω . 
Assuming  from (15) we 
can find increment of instability 

nbJωδωωδωω <<=+= ,, 100

0Im ( / 2) b nqδ ω ω= J . (16)  
Thus self-consistent system of equations (14) have un-
stable solution with increment (16). 

5.2. NONLINEAR ANALYSIS 
The numerical analysis of self-consistent set of equa-

tions (14) has confirmed the presence of instability in the 
considered system. System (14) was solved in two-wave 
approximation, that is at equations it was taking into ac-
count main mode with l=0 and wave which is correspond 
first order of diffraction with  l=1. Conditions for the most 
effective excitation of wave for n 10, µ

21 b b nn ω ω µΩ ≈ + + ( )J  also were selected. In these con-
ditions the excitation of 10-th harmonics was observed. It 
is necessary to note, that it is carried out control calcula-
tions for l = –3, 0, 3. The result of calculations is in accord 
with two-wave approximation. Here amplitude of spatial 
harmonics reduces as lq .  

5.3. EXPERIMENTAL RESULTS 
Experimental investigations [11] were carried out in 

two-frequency range: SHF and UV. The excitation of os-
cillations for SHF range was observed only at simultaneous 
presence of oscillators produced by plasma electrons and 
periodical inhomogeneity produced by artificial grating, 
which immersed in plasma. If the grating or plasma were 
removed, the radiation on harmonics missed. Moreover, 
the plasma could be disposed from grating on different 
spacing interval. Thus there is some critical spacing inter-
val (~2 mm), since which one of the signal on harmonics 
disappears. The directional diagram structure of radiation 
also is in the correspondence consent with the theory. The 
polarization structure of radiation corresponds to radiation 
of a dipole. Power of the magnetron ~ 750 kW 
(7,9 kV/cm). In accordance with  it is necessary 
~4,9 kV/cm. The maximum gain, reached in experiment, 
reached 20 dB. 

/dλ = β

For UV range experiments instead of plasma with grat-
ing instead of the chamber the resonator was placed, which 
was load by high-frequency channel. In resonator the plates 
of semiconductor crystals were placed. The radiation from 
a resonator was fixed by the electronic multiplying tube 
and photomultiplier with the scintillation converter of ra-
diation spectrum (for registration of ultraviolet). At pulse 
duration 2 ms, the breakdown comes at 36 kV/cm. The 
birth of harmonics in vacuum is possible at field intensity 
below this value of breakdown. Therefore as effective 
range for field intensity was selected 15…25 kV/cm. 

 
Fig. 5. The microwave signal amplitude (the upper 

ray) and the radiation signal from the crystal (the lower 
ray) 
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These results are in the good agreement with our repre-
sentations about the mechanism of radiation. 

CONCLUSIONS 
The main conclusion from theoretical considerations 

is that - in all cases at presence of periodic heterogene-
ity's of medium or periodic potential the oscillators will 
effectively excite high numbers of harmonics. Intensity 
of harmonic radiation at local maximum is high enough.  

High efficiency of harmonics excitation by ensemble 
of nonrelativistic oscillators in SHF range is shown ex-
perimentally and it is shown the capability to convert 
energy of external 10 cm of radiation to energy of an 
ultraviolet radiation (10–5 cm). Experimental data are in 
the good agreement with our representations about the 
mechanism of radiation. 

Maximum of radiation will come in most cases on 
radiation with a wavelength: /dλ β= . 

These results allow to expect on creation of a new 
type of beam generators similar to free electron laser, 
key difference which one is the possibility of using of 
flows of nonrelativistic charged particles. 
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ЛАЗЕРЫ НА СВОБОДНЫХ НЕРЕЛЯТИВИСТСКИХ ЭЛЕКТРОНАХ 

В.А. Буц, А.М. Егоров, Е.А. Корнилов, В.И. Мареха, А.П. Толстолужский  

Приведены результаты теоретического и экспериментального исследований возбуждения колебаний по-
токами заряженных частиц и динамики частиц при их движении как в периодическом потенциале в поле 
плоской электромагнитной волны, так и в периодически неоднородной среде. Особое внимание уделено 
исследованию нерелятивистского движения. Найдены условия, при выполнении которых максимум излуче-
ния нерелятивистских осцилляторов приходится на высокие номера гармоник осцилляторов. Аналитически 
исследована линейная стадия пучковой неустойчивости, определены инкременты неустойчивости. Построе-
на нелинейная самосогласованная теория возбуждения электромагнитных волн потоками заряженных час-
тиц. Численными методами исследованы линейная и нелинейная стадии возбуждения высокочастотной вол-
ны с частотой, соответствующей высокому номеру гармоники внешней волны. Экспериментально показана 
возможность эффективного возбуждения гармоник ансамблем нерелятивистских осцилляторов в СВЧ-
диапазоне и преобразования энергии внешнего 10 см-излучения в энергию ультрафиолетового излучения. 

 
ЛАЗЕРИ НА ВІЛЬНИХ НЕРЕЛЯТИВІСТСЬКИХ ЕЛЕКТРОНАХ 

В.О. Буц, О.М. Єгоров, Е.О. Корнилов, В.І. Мареха, О.П. Толстолужський  

Приведено результати теоретичного й експериментального досліджень збудження коливань потоками 
заряджених часток і динаміки часток при їхньому русі як у періодичному потенціалі в полі плоскої електро-
магнітної хвилі, так і в періодично неоднорідному середовищі. Особлива увага приділена дослідженню не-
релятивістського руху. Знайдені умови при виконанні яких  максимум випромінювання нерелятивістських 
осциляторів припадає на високі номери гармонік осциляторів. Аналітично досліджена лінійна стадія пучко-
вої нестійкості, визначені инкременти нестійкості. Побудовано нелінійну самоузгоджену теорію збудження 
електромагнітних хвиль потоками заряджених часток. Чисельними методами досліджені лінійна й нелінійна 
стадії збудження високочастотної хвилі з частотою, що відповідає високому номеру гармоніки зовнішньої 
хвилі. Експериментально показана можливість ефективного збудження гармонік ансамблем нерелятивістсь-
ких осциляторів у СВЧ-діапазоні й перетворення енергії зовнішнього 10 см-випромінювання в енергію уль-
трафіолетового випромінювання. 
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