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The quantum-electrodynamic process of electron-positron pair production by a photon is considered in a strong
external magnetic field. The process is accompanied by emission of the final photon. Kinematics and resonance
conditions are found in ultraquantum approximation, namely the approximation of the strong magnetic field and
low-excited states of an electron and a positron. The resonance conditions are realized, if the energy of the final
photon equals to the distance between the Landau levels of an electron. A probability of the resonance electron-
positron pair production with photon emission is found in the form of the Breit-Wigner cross section. This value is
comparable with the probability of e’e” pair production without photon emission.

PACS: 42.25-Ja; 41.60-Ap

1. INTRODUCTION

The simplest quantum-electrodynamic process of
radiation of a photon by an electron (cyclotron radia-
tion) was performed in the middle of the last century by
Klepikov and Demeur [1]. This process in the field of
more complicated configuration (magnetic field plus a
plane wave along the field) was studied by Oleynik, as
well as Rodionov and Ternov [2]. In 1998 there was
investigated an electron-positron pair production by two
photons in a magnetic field [3].

It should be noted that similar quantum electrody-
namic processes can be accompanied by emitting of the
additional final photon. The emitting photon, of course,
adds an additional power of the fine structure constant,
that in common case decreases a probability of the
process. However, there exists a possibility of a reso-
nant increase of probability.

This work is devoted to the study of such a situation,
namely we study the process of an electron-positron
pair production by a photon with photon emission in an
external magnetic field. This work is a continuation of
work [4] in which the kinematics of the process was
investigational and the threshold values of energies and
momenta of particles were found. Traditionally we use
here the relativistic system of units: #=1,¢=1. The

process kinematics in [4] was obtained from the analy-
ses of the expressions for conservation laws of energy
and momentum. In the external magnetic field a total
momentum of a particle is not saved. However the con-
servation law for a component of momentum which is
the longitudinal to magnetic field is executed in this

case.
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From Eq. (1) in paper [4] the following expressions for
energies and momenta of an electron and a positron
were obtained:
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The process of pair production by a photon can take
place, if the energy of a photon exceeds some threshold
value. The energies and momenta of particles have the
following thresholds values:
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The final photon is radiated with frequency in the inter-
val 0<o '<o-(m+m*), (B = 0), besides the

angle of radiation of a photon 0 ' for arbitrary initial
photon angle 6 is limited by an interval between the
limit values, that have the form:
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In a common case a final photon is radiated under the
angle for which cos®' is in the following interval
Umin SUS Upaxs € Umin > — 1, In the
examined process the momentum of the electron also

depends on the direction of the photon movement. Such
dependence is represented in Fig. 1.
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Fig. 1. Dependence of electron momentum on the
direction of the photon movement for different frequen-
cies of the final photon. For h = 0.3,

— +
I =21 =1,o=10,v=0.5

The left and right edges of these curves correspond to
the threshold values.

2. AMPLITUDE OF THE PROCESS
The wave function of electron has the form [4-6]:
1

vegpe T v )
C=hm(x+p, /hm*), h=H/Hy=eH/m",

where W™ (£) is bispinor, which is expressed through
Hermits functions U(C).
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The wave function of photon has a standard form
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The Green function of electron describes an intermedi-
ate state and has the following form:
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where o, [ are the projection matrices,
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The amplitude of the process is constructed from the
functions of particles and the Green function of the in-

termediate state by common rules of QED in the Furry
representation and has the form [5,6]:
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The function (5) has the form of a flat wave in relation
to three variables, namely ¢, y, z, therefore, amplitude of
the process (8) contains three Dirac delta functions,
which correspond to the laws of conservation. Such an
amplitude corresponds to the following Feynman dia-
grams.
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Fig. 2. Feynman diagrams for the process of elec-
tron-positron pair photoproduction with emission of a
photon

In Fig. 2 wavy lines are photons, and the continuous
lines correspond to electrons (positrons) with
4-momenta p=(g,0,0,p), p" =(¢¥,0,0,p") respec-
tively.

Solutions of Dirac equation in magnetic field form
in amplitude (8) special functions which are known
from papers [1,7]:
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These integrals can be expressed through hypergeomet-
rical functions:
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Note, that the energy of an electron is characterized
by an integer number which is called the number of
Landau level. The case of large values of this number
corresponds to quasiclassical movement of an electron.
This is known as a movement on a spiral. But we exam-
ine the opposite case of the strong magnetic field and
the lowest Landau levels. Such an approximation is
called ultraquantum approximation or the lowest Lan-
dau level (LLL) approximation [8,9]. In this approxima-
tion the magnetic field achieves a big value of an order
of magnitude of about 10'> Gs and higher. Nevertheless
we consider a magnetic field less than critical one

H, =m?/e~4x10"2Gs, so that the value of a field

per unit of H, is a small parameter of the problem
h=H/H,. Thus, in LLL approximation the following
conditions are performed:
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In this approximation the frequencies of photons and
momenta of a particle have the form:
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where d, k are numbers of order of a unit. Variables 1,
1’ of the special functions (10) have the following form
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For such values of n, 1" hypergeometrical functions are
considerably simplified:
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It gives us a simple expression for the special functions:
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The most interesting case in kinematics of the proc-
ess is the case of resonances. It takes place when the
denominator of Green function (7) tends to zero. In this
case the intermediate state goes to the mass surface and
is a real particle. Physically resonance takes place when
the energy of the final photon is equal to the distance
between the Landau levels of an electron.

To avoid divergency in resonance it is necessary to
use Breit rule

(16)

where I, I'rare widths of resonances in the first and the
second diagrams (fig. 2) that are the total probabilities
of decay of intermediate states, i.c., the probability of a
single photon emission. Then the denominator can be
written as following:
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As a result the amplitude of probability in LLL ap-

proximation near-by resonance can be resulted to the

form:
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a’, b’ are the parameters which characterize polarization
of the final photon. ®,, @, are the phases of Feynman
diagrams:
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It is more convenient for description of photons polari-
zations to pass to the Stock’s parameters &;, &’;:
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Thus, the amplitude (18) is obtained with arbitrary val-
ues of polarizations of photons and projections of the
electron spin that enables to execute the analysis of po-
larization effects in the process.

3. PROBABILITY OF THE PROCESS

Probability can be obtained from the amplitude us-
ing standard rules. It is needed to calculate the number
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of the final states and to multiply by the square of am-
plitude.

The wave functions of the electron and the photon
have normalized constants L,, L,, L.:
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These values come into amplitude and probability of a

unity state too:
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where 8 are three Dirac delta functions in Eq. (18).
The number of the final states is

Sd*p-Sd*p* -vd3k'
@n)’
It should be noted that the physical values must not
have any nonphysical constants such as L, Ly, L. It has

place in case of a differential probability if we take into
account that
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A differential probability of the process in time unit
can be presented through the amplitude M in the follow-
ing form [8,9]:
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Before calculating this probability let us consider
briefly simpler processes that are first order processes.
Their probabilities have been known for a long time. In
the LLL approximation probabilities of a photon pair
production and a cyclotron radiation have the following
form:
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In the case of a ground state of a pair /=/'=0 for a mag-
netic field #=0.1 or H=4'10"Gs a pair production
probability has order
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The probability of cyclotron radiation has a simple
form:

W, =%na Rm=n-T (28)
and for A=10.1
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It should be noted that amplitude consists of two
elements that are two Feynman diagrams. If the second
element is much less than the first, then the probability
is the square of the first element. In this case in reso-
nance conditions we succeeded to take the probability
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in the form of Breit-Wigner formula:
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Numerator (30) is a product of probabilities that exactly
coincide with (26). This means the following: in reso-
nance this process breaks into two independent proc-
esses of the first order. Integration on an angle of the
final photon gives estimation to the total probability
AW,. This value is equal to the probability of the first
order process.
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In order to find a correct angular dependence and
also a dependence on polarization and spin it is neces-
sary to take into account both diagrams, both elements
in the amplitude. The following expression corresponds
to this case:
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This probability depends not only on the polar angles of
the photons but also on the difference of the azimuthal
angles. The angle dependence of probability is charac-

terized by the function K(&’,Q2”), which is represented in
Fig. 3.

Fig. 3. Angle dependence of probability for the case
') =&'3=1/42, Any=r

The probability has the maximal value for u=1, when a
photon takes off along the magnetic field. It is needed to
mark that in kinematics there are cases, when probabil-
ity is equal to the doubled Breit-Wigner probability
both for the first and for the second diagrams.

One of the interesting questions in this problem is a
peculiarity in the probability of a pair production with-
out the final photon. This value contains the momentum
of particles in denominator from integration on momen-
tum.
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When the longitudinal momentum tends to zero, the

probability tends to infinity. Note, it takes place on the
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PE3OHAHCHOE ®OTOPOJIEHUE e" e -IIAPBI
C HCITYCKAHUEM ®OTOHA B CWJIBHOM MATI'HUTHOM I10JIE

IILH. ®omun, P.U. Xonooos

PaccmarpuBaeTcsi KBaHTOBO-3JIEKTPOJIMHAMUUECKHI TIPOLECC POXKACHHS AJIEKTPOH-MIO3UTPOHHONW Hapbl (GoTO-
HOM B CHJIBHOM BHEIIHEM MarHWTHOM noune. [Iponecc conpoBoskaaeTcs: HCIycKkaHneM KoHeuHoro ¢orona. Haiine-
HBI KHHEMaTHKa W PE30HAHCHBIE YCIIOBHS B YIbTPAKBAHTOBOM NMPHOIKECHNH, MPUOIMKEHNUH CHIIBHOTO MarHUTHOTO
ot U cnabo BO3OYKICHHBIX COCTOSHHH 3JIEKTPOHA M TO3UTPOHA. PE30HAHCHBIC YCIIOBHS PEANU3YIOTCS, €CIIU
9HEPrHsi KOHEYHOTo (POTOHA paBHA PaCCTOSHHUIO MEXIy ypoBHsAMHU JlaHnay anekTpoHa. BeposTHOCTh pe30HAaHCHOTO
POXIIEHHS DIIEKTPOH-TTO3UTPOHHON Naphl ¢ pOoTOHHON aMHuccHeil monydeHa B popme ceuenust bpeiita-Burnepa. Ota
BEJIMYMHA OJIHOTO TMOPS/IKA C BEPOSTHOCTBIO POKICHHS € € -Napbl 6€3 u3ayueHus GoToHa.

PE3OHAHCHE ®OTOHAPO/I’)KEHHA ¢ e -IIAPHU
3 BUTTPOMIHIOBAHHAM ®OTOHA B CWJIBHOMY MATHITHOMY ITOJII

I1.1. @omin, P.1. Xonoooe

PosrisnaeTbess KBAHTOBO-EJIEKTPOJMHAMIYHAN MPOLIEC HAPOKEHHS €JIEKTPOH-TIO3UTPOHHOI 1apu ()OTOHOM B
CIIIFHOMY 30BHIITHHOMY MarHiTHOMY moii. [Ipomec cympoBOIKY€THCS BHIIPOMIHIOBaHHSIM KIiHIIEBOTO (POTOHA.
3HaliICHO KIHEMaTHKY 1 pE30HAHCHI YMOBHU B YJIBTPAKBAaHTOBOMY HAOJIDKEHHI, HAOIMIKEHHI CHIIBHOTO MarHiTHOTO
noJis i cnabo 30y HKEHUX CTaHIB €JIeKTPOHA 1 MO3UTpoHA. Pe30HaHCHI YMOBH pealizyroThCs, SKIO €Hepris KIHIEBO-
ro (oroHa NOpIBHIOE BijncTaHi MK piBHsAME JlaHnay enekTpoHa. IMOBIpHICTE PE30HAHCHOTO HApOJKEHHS €JIEKT-
POH-TIO3UTPOHHOI mapu 3 (HOTOHHOIO eMiciero 3m00yTa y dopmi mepepizy bpeiita-Biraepa. Lls Benmuunza ogHOTO
TOPSIKY 3 IMOBIPHICTIO HAPOIKEHHS € € -Mapu 6e3 BUIPOMiHIOBaHHS (POTOHA.
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