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An ideal gas of relativistic massive electrons in the background of a Dirac magnetic monopole is considered. We
find that in the case of CP symmetry violation this system acquires, in addition to charge, also squared orbital angu-
lar momentum, squared spin, and squared total angular momentum. The functional dependence of these quantities
on the temperature and the CP-violating vacuum angle is determined. Thermal quadratic fluctuations of conserved
quantities are examined, and we analyze, when charge and squared total angular momentum become sharp quantum

observables rather than mere expected averages of many quantum measurements.
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1. INTRODUCTION

The interaction of quantized Dirac fermion fields
with classical background fields of nontrivial topology
can give rise to quantum states with rather unusual ei-
genvalues [1-3]. In particular, the ground state of a
Dirac electron in the background of a Dirac magnetic
monopole acquires nonzero electric charge, and this
results in the monopole becoming a CP symmetry vio-
lating dyon [4-6]. The effect persists when thermal fluc-
tuations of the quantized Dirac electron field are taken
into account, and this yields temperature dependence of
the induced charge [7-9].

The aim of the present paper is to show that, in addi-
tion to charge, also other quantum numbers are induced
in the magnetic monopole background both at zero and
nonzero temperatures. We find relationships between all
these quantum numbers and discuss, which of them
become sharp quantum observables rather than quantum
averages and also when this happens. At nonzero tem-
perature all quantum numbers are not sharp observ-
ables, but, instead, are thermal averages; and, appropri-
ately, the thermal quadratic fluctuations are nonvanish-
ing. If a quadratic fluctuation vanishes at zero tempera-
ture, then a corresponding quantum number at zero
temperature becomes a sharp observable. We find out,
in particular, that induced charge and squared total an-
gular momentum at zero temperature are sharp observ-
ables for almost all values of the vacuum angle with the
exception of the one corresponding to zero energy of
the bound state in the one-particle electron spectrum.

2. OPERATORS OF PHYSICAL
OBSERVABLES AND THEIR VACUUM
AND THERMAL EXPECTATION VALUES

In the second-quantized theory, the operator of a
dynamical variable (physical observable) is given by the
integrated commutator of the electron field operators,

Oy = % | d%{\{/*(a 0, Y¥(7, t)l, (1)

where Y is the appropriate one-particle operator in the
first-quantized theory, and tr denotes the trace over
spinor indices; in particular, OH is the operator of en-
ergy, where H is the one-particle Hamiltonian, and

O,; is the operator of charge, where I is the unity ma-

trix in spinor indices, and e is the electron charge. The
vacuum expectation value of the observable
corresponding to Eq. (1) can be presented as

<VaC

where Tr is the trace of an integro-differential operator
in the functional space: TrU=Jd3z7tr<z7 |U|F). The

OAY‘vac>:—%TrYsgn(H), 2)

thermal expectation value of the observable is conven-
tionally defined as (see, e.g., Ref. [10])

_ SpOy exp(-f0y)
B Spexp(-fOy) 3)

Oy(T) = <ér>

-1

B =(kpT) ",
where T 1is the equilibrium temperature, kp is the
Boltzmann constant, and Sp is the trace or the sum

over the expectation values in the Fock state basis in the
second-quantized  theory. Evidently, the zero-
temperature limit of Eq. (3) coincides with Eq. (2):

Oy(0) = <Vac | OY | Vac>. 4)

Thus, Eq. (3) can be presented in a way similar to that
of Eq. (2), i.e., through the functional trace of operators
in the first-quantized theory, see, e.g., Ref. [11],

OY(T):—%TrYtanh(%,BH]. %)
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The self-adjointness of the one-particle Hamiltonian
ensures the conservation of energy in the second-
quantized theory, and the corresponding operator is
diagonal in creation and destruction operators; the op-
erator of any other conserved observable is diagonal as
well.

If an observable is conserved, then its thermal quad-
ratic fluctuation,

. . . 2
A(1:01)=(0%) ~((0x), ]
takes form
A(T; OY) = iTr Y2 sech? (% ,BH]. (6)

Egs. (5) and (6) are transformed into integrals over the
energy spectrum

Oy(T)= —% jw dE ty(E)tanh G ,BE) (7)
and

A(T:0v )= i Oj;dEsz (E)sech? G ﬁEj, ®)
where

r(E)=TrY §(H—E) )
and

72(E)=TrY* §(H - E) (10)

are the appropriate spectral densities.

3. DIRAC ELECTRON IN THE DIRAC
MONOPOLE BACKGROUND

Since the monopole mass is estimated to be much
heavier (by two orders) than the electron mass, it is rea-
sonable to adopt a viewpoint according to which the
monopole only provides a background where the elec-
tron moves. Within this approach we consider quantiza-
tion of the electron field in the background of a classical
monopole field configuration.

3.1. ONE-PARTICLE OPERATORS

A configuration of a pointlike monopole with mag-
netic charge g at the origin is given by the field

strength in the form
B(F)zg%, 5-3(7):47rg63(7). (11)
r

Following Wu and Yang [12], one can divide space into

two overlapping regions, R,:0<8< %+ o, and
Ry :%—5< <z (here 0<9<rx stands for the azi-
muthal angle in spherical coordinates, x =rsingcos¢,

y=rsindsing, z=rcosd, and 0<5<%), and de-

fine the patched vector potential:

A)dF = g(1—cosP)dg,
" |—g(1+cos 9)dg,

FeR,, (12)

?ERb,
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then OxA=B, where B is given by Eq. (11). In the
overlap

R :£—5<3<£+5, the two potentials are re-
b 2

a

lated by gauge transformation

B
4 = A|b +zsubasab1, (13)
with
Sup =", (14)

Therefore, the vector potential serves as a connection on
a nontrivial U(1) bundle, and the electron wave func-

tion is a section of this bundle, i.e. wave function
Y(7,t) is two-valued with its values in the overlap

R, related by gauge transformation
(15)

Generating function S,;, (14) is existing (i.e. single-

\P|a =S, ‘I’|b.

valued) only when

nez,

1
eg=—n, 16
g=3 (16)
which is the celebrated Dirac quantization condition
[13] that has already attained its 75-year anniversary.
The Dirac Hamiltonian in the background of a static
magnetic monopole takes form

H=-y"% (i0+ed)+y°M, (17)

where 7/0 and 7 are the Dirac matrices, M is the elec-

tron mass, and A is given by Eq. (12). The magnetic
monopole background is rotationally invariant and three
generators of rotations are identified with the compo-
nents of vector J — the operator of total angular mo-
mentum in the first-quantized theory,

J=A+Z, (18)
where

A=-Fx(i0+ed)—eg ™ (19)

r

is its orbital part, and

= i

T=—yx¥ 20

27 (20)

is its spin part; note that the last term in Eq.(19) is nec-
essary in order to ensure the correct commutation rela-
tions:

[J7, 7 =igJ!.

3.2. SELF-ADJOINT EXTENSION
AND CP SYMMETRY VIOLATION

A solution to the stationary Dirac equation

H(F|E,jm)y=E(F|E,j,m) (1)

. . 1
for the lowest partial wave with j=|eg| 3 cannot be

chosen to be regular at the location of the monopole.
The procedure of the self-adjoint extension is imple-



mented for the corresponding partial Hamiltonian,
yielding boundary condition [14, 15]

®
cos| —+— | lim rf'(r
(2 4jr—)0 7(r)

(22)
= isgn(eg)sin (% + %) limrg(r),

where f(r) and g(r) are the radial functions of the
upper and lower components of the wave function,

_ 1 S 1,(3,0)
Ea ) = 5 23
FlEleg|=5.m) (g(r) w(&@] @)
leg|-m+1/2
| et T ra99)
M (3, 90) = , (24)

leg |[+m+1/2
W Y\eg\,m+1/2(19,¢)

Y‘ eglm! /2(9,¢) are the appropriate monopole harmon-

ics [16], m=—|eg|,—|eg|+]l,...|eg|, and ® is the
self-adjoint extension parameter that plays the role of
the vacuum angle in Witten’s approach [4]. It should be
emphasized that CP symmetry is violated, unless
O=nr.

In the case of cos® <0, there exists, in addition to
continuum states with energies £>M and E<-M,
also a bound state with energy Egg =M sin®:

isgn(eg)sin[%%j i (9,0)

7| EBS,m> =
cos 9+£ nn(%0) | (25)
24
xl\/—ZM cos @ eMreos®,
r

4. INDUCED QUANTUM NUMBERS
IN THE DIRAC MONOPOLE BACKGROUND
In the standard representation for the Dirac matrices

operators A (19) and T (20) are of the block-diagonal
form,

Y= @0 26
Lo ) (26)

and contain no derivatives in 7 :
Qh(r)é(8,9) = h(r)Q&(3,9). (27)

It can be shown that, when conditions (26) and (27) are
satisfied, the contribution of partial waves with

1 . . .
J > eg|—5 to spectral density (9) is even in energy,

and, thus, these waves do not contribute to thermal ex-
pectation value (7). The contribution of the lowest par-
tial wave to spectral density (9) is calculated to be

leg| 27 =« ' ¥
ty(B)= X [ dg[dFsinSn,Qny,

m=—leg| 00
x[@(—COS@)é(E—MSin@)—i5(E—M)

cos® sgn(F) (28)

27 E—-Msin®

7%5(E+M)+

M

52 12

Using the last relation, we get the following expression
for the thermal expectation value (7) of the observable
which corresponds to an operator satisfying conditions
(26) and (27):

O(E2 - M?)|.

1 legl 27 =« ¥
Oy(N)=—> % [ dg|d9sindn}Quy, x
2m=egl 0 0

><|:0(— cos©) tanh(%ﬁM sin ©) 29

1
sin20%  dw tanh(Eﬁ Mw)

2z 1\/w2—1 wZ —sin? ©

The integration over angular variables with summation
over m can be performed using the orthonormality of
n,, ’s. In particular, one gets immediately

05 (1) =05(T) = 03(T) =0, (30)

and, thus, rotational symmetry is not spontaneously
broken. In the case of Y =el , one gets induced charge
[7-9]

Oy (T) = —e| eg | [9(— cos @)tanh(% BM sin ©)

tanh( % AMw) €2))

sin20®  dw
27 1 w2 _1 w?-sin?@

+

>

. 1 .
note that the last expression at |eg |= 5 coincides with

the expression for charge which is induced in 2+1-
dimensional space-time at finite temperature by a point-
like magnetic vortex with flux zmod2z [17].

All other nonvanishing quantum numbers are related
to Eq. (31): squared orbital angular momentum

0,2(T) =|eg |(|eg | +1)e” Oy (T), (32)
squared spin
3 _
Oy (T) =2 ¢ 0y (T), (33)
and squared total angular momentum
1| -
0,,(T)= [(eg)2 —ﬂe '0,/(T). (34)

Note that charge tends to finite value at zero tem-
perature

0,(0)=-2e|eg |larctan(tan%), (35)
/4
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and vanishes in the high-temperature limit as inverse
temperature
Oe,(T—>00):—§|eg|ﬂMsin®. (36)
Thus, one can conclude that at CP-violating values of
the vacuum angle (i.e. at ® # nx ) both charge and the
squares of orbital angular momentum, spin, and total

angular momentum are induced at finite (zero and non-
zero) temperatures.

5. QUANTUM EIGENVALUES
OR QUANTUM EXPECTED AVERAGE
VALUES

The squares of orbital angular momentum and spin
are nonconserved observables, so their values both at
zero and nonzero temperatures should be regarded as
expected averages of many quantum measurements. The
conserved observables are charge and squared total an-
gular momentum; note that the latter vanishes in the
case of the minimal monopole strength |eg |=1/2.

We analyze thermal correlations between conserved
and nonconserved observables and thermal quadratic
fluctuations of conserved observables, and find out that
these quantities at nonzero temperature are given by the
ideal gas expressions, and, thus, are ® -independent and
proportional to the powers of spatial volume. For exam-
ple, we list here the expressions for the quadratic fluc-
tuations of charge,

2 25172

A(T O € L J. (Sﬂ—M)’ (37)
'B BM? coshz(zx/;)

and squared total angular momentum,
AT;0,2) =

4/3 1,7/3 o _n231s2N\5/2

2 ] o
3sp2\dn) BT e cosh2(2 J;)

Note that in the high-temperature limit Eqs. (37) and

(38) increase as T 3and 77, Thus, the values of charge
and squared total angular momentum at nonzero tem-
perature should be regarded as expected averages of
many quantum measurements, since the corresponding
thermal quadratic fluctuations are nonvanishing.

However, interaction with the monopole background
reveals itself at zero temperature, yielding a O -
dependence of a specific type, which is due to a possi-
bility of appearance of a bound state with zero energy in
the one-particle electron spectrum, i.e. at cos®<0 and
sin® =0, see Eq. (25):

0, ® # rmod 27

A0;0,) = (39)

—|eg| ® =7mod 27

and
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A(020J2)=

0, ® %= rmod2rx (40)

l|e |[(6 )2—1}2 ©=7mod2r
2 4 4 Rl

This fact has immediate consequences when we turn
to a question: whether the values of charge and squared
total angular momentum at zero temperature are ob-
served in a single quantum measurement, or whether
they are to be regarded as expected averages of many
such measurements. As it follows from Egs. (39) and
(40), charge and squared total angular momentum are
sharp observables (quantum-mechanical eigenvalues),
unless ® =7 mod27z . Thus, CP-conserving values of

the vacuum angle, ® =nx , differ significantly. In the
case of ® =2nx, zero charge and zero squared total

angular momentum are observed in a single quantum
measurement. In the case of ® =(2n+1)7z , only zero

squared total angular momentum at |eg|=1/2 is a
sharp quantum observable, while zero charge at eg #0
and zero squared total angular momentum at |eg [>1/2

are expected average values of many quantum meas-
urements.
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MATHUTHBII MOHOITIOJIb U HAPYIIEHUE CP-CUMMETPUU
P KOHEYHOM TEMIIEPATYPE

10.A. Cumenko, A.B. Conosves, H./l. Bnacuii

PaccmarpuBaercs naeanbHbIN ra3 peIsITUBUCTCKIX MACCHUBHBIX 3JIEKTPOHOB B MPUCYTCTBHM MarHUTHOTO MOHO-
nons upaka. O6HapyskeHo, uTo npu Hapymennun CP-cuMmerpun B 3TOH cucTeMe Hapsiiy C 3apsiioM BO3SHHUKAIOT
TaKKe KBaJpaT OpOUTAIBHOTO YIJIOBOTO MOMEHTA, KBaApaT CIMHA M KBaJpaT IOJHOTO YIIoBOro MomeHTa. Ompe-
JeneHa (yHKIMOHATIbHAS 3aBUCUMOCTb 3THX BEIMYUH OT TEMIIEPATyphl M BaKyyMHOTo yria, Hapymasomiero CP-
CUMMeTpHIO. MccnenoBanbl TeMrepaTypHble KBaJpaTuiHble (IyKTyallud COXPaHSIONINXCS BEIUYMH, U YCTaHOBJIE-
HO, KOTJIa 3apsi/l ¥ KBaJpaT MOJHOTO YIJIOBOTO MOMEHTA CTAaHOBSITCS TOYHBIMU KBAaHTOBBIMHU HaOJIIOaeMBIMH, a HE
MPOCTO OXKHUJAEMBIMH CPETHUMH IO MHOTMIM KBAHTOBBIM H3MEPECHHSAM.

MATHITHAN MOHOITOJIb TA IIOPYIEHHS CP-CUMETPIi IPU CKIHYEHHINA TEMITEPATYPI
10.0. Cumenko, O.B. Conogiios, H,JI. Bnaciiu

PosrmsnaeTses ineanbHUM Ta3 pENsSTHBICTCHKUX MAaCHUBHUX €JIEKTPOHIB y MPHCYTHOCTI MAarHiTHOIO MOHOIOJIS
Hipaka. 3HaiineHo, mo mpu nopyireHHi CP-cuMeTpii B il crcTeMi mops i3 3apsa0M BHHHUKAIOTh TaK0XXK KBajpaT
op0iTaIbHOTO KyTOBOTO MOMEHTY, KBaJIpaT CIIiHy Ta KBaJApaT MOBHOTO KyTOBOTO MOMEHTY. Bu3Hauena ¢yHkIrioHa-
JIbHA 3aJIEKHICTh IMX BEJIMYMH BiJl TEMIEPATYypH Ta BaKyyMHOIro KyTa, 1o nopymye CP-cumerpito. JlocmimkeHi
TEeMITepaTypHi KBaJpaTH4Hi (QIIyKTyalii BeTUUuH, 010 30epiraloThes, 1 3°sICOBaHO, KOIM 3apsi Ta KBaJgpaT MOBHOTO
KyTOBOT'O MOMEHTY CTalOTh TOYHHMH KBAaHTOBUMH CIIOCTEPE)KYBAaHUMHM, a HE MPOCTO OYiKYBAaHUMHU CEPEAHIMH I10
6araTbOM KBaHTOBUM BHMIpPIOBAaHHSM.
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