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1. INTRODUCTION

We start with the citation of a very surprising (for
us) appraisal of supersymmetry [1-4] given by Yury
Abramovich Golfand during the Conference "Super-
symmetry-85" at Kharkov State University in 1985. He
said [5] that supersymmetry did not justify his hopes to
find a generalization of the Poincaré group such that
every its representation includes the particles of differ-
ent masses. Golfand and Likhtman had missed their
aim, but had instead found supersymmetry, every repre-
sentation of which contains the fields of different spins.

So, the problem was raised and requires its solution.
In the present paper we give a possible solution of the
problem of the multiplet which components have the
different masses'. We illustrate the solution on the ex-
ample of the centrally extended (1+1)-dimensional

Poincaré algebra [7-12].

2. TENSOR EXTENSION
OF THE POINCARE ALGEBRA

In the paper [10] the tensor extension of the Poin-
caré algebra in D dimensions
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were constructed. Here M, are generators of rota-
tions, P, are generators of translations, Z,, is a tensor
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1Conceming another approach to this problem see the
paper [6].

symmetric Levi-Civita tensor in the even dimensions
D=2k.

Generators of the left shifts with a group element
G , acting on the function f(y)

[T(G)f10) = £(Gy), y=(,2%),

have the form
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where coordinates x“ correspond to the translation

generators P, , coordinates % correspond to the gen-

erators Z,, and S,, is a spin operator. In the expres-

sions (2.5) 0, = %

3. TWO-DIMENSIONAL CASE

In the case of the extended two-dimensional Poin-
caré algebra the Casimir operators (2.2), (2.3) and (2.4)
can be expressed as degrees of the following generating
Casimir operators:

z:—%s“bzab, (3.1)

C=PP,+2M,,, (3.2)

where €% =—g%, £%1 =1 is the completely antisym-

metric two-dimensional Levi-Civita tensor. The rela-
tions (2.5) can be represented as

B =R=-0,-30, (3.3)
P.=hR =-ax+%ay, (3.4)
J Z%SabMab = —t@x —Xat +S01, (35)
z=0,, (3.6)

where £=x" is a time, x=x'isa space coordinate,

01

y=z  is a coordinate corresponding to the central
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element Z and the space-time metric tensor has the
following nonzero components g1 =—ggg =1 .

The extended Poincaré algebra (2.1) in this case can
be rewritten in the following form (see also [9]):

b
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[£,,Z]=0, [J,Z]=0 (3.7)

and for the Casimir operator (3.2) we have the expres-
sion

C=P'P,-27J. (3.8)

For simplicity let us consider the spin-less case
So1 =0 . Then with the help of the relations (3.3)—(3.6)

we obtain a mass square operator

x2

2_
Mr=d, -0,=P2-P2-yz-""X 72 (39

XX

. 2 2
where the notations 0, = ;— and 9, =< are used.
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4. NEW COORDINATES
By a transition from #,x and ) to the new coordi-
nates
X _ttx
T,
2 2
1" =X
-=)V- ) 4.1
y-=y-—y 4.1)
we obtain the following expressions for the generators:
P =0, , (4.2)
P =2x0, -0, , (4.3)
J=x0, —x+6x+, (4.4)
Z=0, (4.5)
where
P.=P.tP.

These generators satisfy the following commutation
relations:

[P.,P1=-2Z,
[J, P ]= +P+,

[J.Z]=

[P, Z]=0. (4.6)

We see that P, are step-type operators.

The Casimir operator (3.8) in the new coordinates
takes the form

C=PP +7Z-27J (4.7)
and the mass square operator is
M?=PP +7-7J)-x,x 7% (4.8)

5. MULTIPLET

As a complete set of the commuting operators we
choose the Casimir operators Z , C and rotation opera-
tor J. Let us assume that there exists such a state

W, j(xp,x_,y_) that
PY, j(x,x_,y_)=0, (5.1)
Z¥, j(xpx_y)=z¥, (x,x, ), (5.2)
JY, (e, xo,y )=, (g, x_,y). (5.3)
The equations (4.2) and (5.1) mean that
‘PZJ (x;,x_,y_) is independent on the coordinate x_ .

Then, as a consequence of the relations (4.4), (4.5),
(5.2) and (5.3), we come to the following expression for
the state W' ;(x;,y_):

-J

W, (g, y)=ax, e, (5.4)

where a is some constant.
For the states

PR (e y0), (k=012 (5.5)
we obtain

JPMY, (xy )= 7P, (xy)

=(J+k)P, k‘i’z,j(xwyf), (5.6)
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CPMW, (x,.y)

=2(1-2))P. ¥ j(x,.p0), (58)
from which we have

7 =j+k, (5.9)

M=k +1- j)z—x,x_2°. (5.10)

The states (5.5) are the components of the multiplet.
By excluding & from the relations (5.9) and (5.10),
we come to the Regge type trajectory

7 =a(0)+a.a? (5.11)
with parameters

o(0)=2j-1+x,x_z, (5.12)

o' -1 (5.13)

6. CONCLUSION

Thus, on the example of the centrally extended
(1+1)-dimensional Poincaré algebra we solved the prob-
lem of the multiplet which contains the components
with the different masses.

It would be interesting to construct the models based
on such a multiplet.
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Note that, as can be easily seen from the commuta-
tion relation

[6x,, +Aa,6xb +Ab] = Fab’

where A4, is an electromagnetic field and £, is its

strength tensor, the above mentioned extended D =2
Poincaré algebra (3.7) is arisen in fact when an “elec-
tron” in the two-dimensional space-time is moving in
the constant homogeneous electric field.
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MYJIBTHIVIET C KOMIIOHEHTAMMU PA3JIMYHBIX MACC
A.B. Copoxa, B.A. Copoka

YkazaHa NpUHIHUIHATIBHAS BO3MOXKHOCTD CYIIECTBOBAHMS MYJIBTUILIETA, COJAEPIKAIIETO KOMIIOHEHTHI € pas3iny-
HBIMH MaccaMH. JTa CTaThs IMOCBAIICHA maMsaThH AHHBI SkoBieBHbI I emox (Kamatina).

MVYJBTHILVIET 3 KOMIIOHEHTAMMU PI3BHUX MAC
A.B. Copoxa, B.O. Copoka

BkazaHo Ha NPHHIMIIOBY MOXJIMBICTH ICHYBaHHS MYJIBTHIUIETA, IO MICTUTh KOMIOHEHTH 3 PI3HUMH MacaMH.
s crarTs mpucesiaeHo nam’sati ['anan Sxosnesrn [enrox (Kamaiina).
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