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The Dirac equation offers a precise analytical description of relativistic two-particle bound states, when one of
the constituent is very heavy and radiative corrections are neglected. Looking at the high-Z hydrogen-like atom in
the infinite momentum frame and treating the electron as a "parton", various properties usually attributed to the
quark distributions in the nucleon are tested, in particular: Bjerken scaling; charge, helicity, transversity and mo-
mentum sum rules; existence of the parton sea; Soffer inequality; correlation between spin and transverse momen-
tum (Sivers and Boer-Mulders effects); transverse displacement of the center-of-charge and its connection with the
magnetic moment. Deep inelastic experiments with photon or positron beams at MeV energies, analogous to DIS or

Drell-Yan reactions, are considered.
PACS: 03.65.Pm, 11.55.Hx, 13.60.-r

1. THEORETICAL FRAME

The Dirac equation enables us to study the relativis-
tic aspects of an hydrogen-like atom A4 of large Z
(Zo~1, where a=e? /(47)=1/137). It takes all or-
ders in Za into account but neglects (i) the nucleus
recoil, (ii) the nuclear spin and (iii) radiative corrections
like the Lamb shift. So it is accurate at least to zeroth
order in @ and m,/m,. Applying a Lorentz boost, we
have an explicit model of “doubly relativistic” two-body
bound state (relativistic for the internal and external
motions). In particular, boosting the atom to the “infi-
nite momentum frame” (or looking it on the null-plane
t+z=0), one has a model for the structure functions
which appear in deep inelastic scattering on hadrons. In
fact, since it neglects nucleus recoil, this model is best
suited to mesons with one heavy quark. However many
properties can be generalized to hadrons made of light
quarks.

In analogy with the quark distributions, we introduce
the unpolarized electron distributions g(k"), g(k,,k")

and ¢(b,k"), where k" takes the place of the Bjorken
scaling variable, k, is the transverse momentum of the
electron and the impact parameter b= (x,y) is the
variable conjugate to k, . We will also define the corre-
sponding polarized distributions like ¢(b,k",S°;S"),

where S* and S° are the polarization vectors of the
atom and the electron. We will particularly study:

« the differences between ¢(k"), the helicity distribu-

tion Ag(k") and the transversity distribution Sq(k");

* the sum rules for the vector, axial and tensor charges
and for the longitudinal momentum;
« the correlations between S*, S° and b or k,, like

the Sivers effect;

+ the existence of a non-zero (b) for transverse S and

its connection to the atom magnetic moment;
* the positivity constraints;
+ the existence of an electron - positron sea and its role
in the sum rules.

As scaling variable we take the null-plane momen-
tum of the electron measured in the atom rest frame,

k= (kg +k.) =M (k./Py; )

rest frame inf. mom. frame (1)

:MA xBj.

We prefer it to the Bjorken variable x, which is
very small and depends on the nucleus mass. The kin-
ematical limit for |k" | is M,

atom

but typical values are
k" —m, |~ Zam,.

We hope in this study to get a better insight of rela-
tivistic and spin effects in hadronic physics. The infinite
momentum or null-plane description can also be inter-
esting in atomic physics itself, since “deep inelastic”
experiments can also be made with atoms, in particular:
» Compton profile measurements:

7(K)+bound e” — y(K + Q)+ freee” (k')
* Moeller or Bhabha scattering:

e™(K)+bound e” — e* (K + Q) + free ™ (k')
+ annihilation:

e (K)+bound e” — y(K +Q)+y(k).

The Mandelstam variables s = (K +Q+k')*, t = 0’
and u = (K —k')* are supposed to be large compared to
m’ . A ten MeV beam is sufficient for that. We take the

Z axis opposite to the beam direction. In the laboratory
frame the final particles are ultrarelativistic nearly in the
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—2z direction. The components k" and k, of the elec-
tron momentum just before the collision are given by
k™ =0, 2
k7 = —P'r(nucleus) = k'r + Qr. 3)
k™ can be measured with one detector, k™ and k,
need two detectors. The definition (3) of k;,
ous due to the final state Coulomb interaction.

is ambigu-

2. JOINT (b,k") DISTRIBUTION

Being observable quantities, the operators k& and
k, should be defined in the gauge independent way

k" =i0,-V(r)—id. - A(r), k,=-iV,(r)-A,.@4)

They do not commute: [k",k,]=—iV, V(r), where
-V, V(r) is the transverse part of the Coulomb force.
Therefore one cannot define a joint distribution
q(k",k,) in an unambiguous way. Leaving this prob-
lem for the next section, we can at least define the joint
distribution ¢(k*,b) in the impact parameter represen-

tation. This quantity plays a role in double H + H colli-
sions in which both nuclei and both electrons collide.

From the known the Dirac wave function of the hy-
drogen atom (see, for instance [1-3])

¥(t,r)=¥(r)e ™, (%)

we can define the two-component null-plane wave func-
tionin b and k, [4],

Db, k) = jf:dz exp{-ik'z +iEz~iy(b,2)} ®(r);  (6)

o [BO+E0),
b= (\I@(r) —%(r)} 7

X(b,z) :J.ZZO dz'V(x,y,z')

(®)
= ~Zal sinh™" (2/b)—sinh ™ (z9 /) |

The "gauge link" exp{-iy(b,z)} transforms ¥ in
the Coulomb gauge to W in the null plane gauge
A" =0 (4. =0 in the infinite momentum frame). The
choice of z, corresponds to a residual gauge freedom.
The quantity

dN,
d’b dk*/(2m)
will be temporarily interpreted as the electron distribu-
tion in the atom. One has indeed

[ Sra=13

However a 51gniﬁcant re-interpretation will be given
in Section 5.

The gauge link makes ¢(k*,b) invariant under a
gauge transformation, for instance
V(r)—>V(r)+Const, E(r)— E(r)+Const. Such a

shift of the potential is practically realized when elec-
trons are added in far outer shells. Intuitively, this addi-

q(b.k") = =" (b,k") O(b,k"), (€]

jdb q(b k") =1. (10)

tion does not change the momentum distribution of the
deeply bound electrons.

3.JOINT (k,,4") DISTRIBUTION

Notwithstanding the non-commutativity mentioned
earlier, one can make a transversal Fourier transform of

(6),
D(ky, k") = [d’b e oo k") (11)

and define a longitudinal-transverse momentum distri-
bution

gy, k") =T (kp, k) Okp, kT), (12)
normalized to
(k%) = [qkp k") d*kp/27)?. (13)

q(k7,k*) depends on z,, which is a remnant of the
ambiguity. However, an appropriate choice of z, turns
this apparent disease into an advantage [5-7]. Taking
zg = —oo for the Compton reaction, the factor e ™ in

(6) just takes care of the final state interaction: it de-
scribes the distortion of the scattered electron wave
function by the Coulomb potential, in the eikonal ap-
proximation. Similarly, taking z, = +oo for the annihila-
tion reaction, it describes the distortion of the initial
positron wave function. Thus g(k,,k"), which depends
on z,, has no precise intrinsic character. One can just

consider a “most intrinsic” definition with z, =0.

4. SPIN DEPENDENCE OF THE ELECTRON
DENSITY

In formulas (5-12) the angular momentum state of
the atom was not specified. We assume that the electron
is in the fundamental n=1, j=1/2 state and the nu-
=2(]) and S°=2(s) denote
the atom and electron polarization vectors. The unpolar-
ized electron density in (b,k") space in a fully polar-

ized (|S* |=1) atom is

cleus is spinless. Let S*

q(b,k";S") = @' (b,k";8") ®(b,k";S") (14)
and the electron polarization is given by
S¢(b,k";8") q(b,k*:S*
( ) q( ) (15)

=0 (b,k";8")od(b,k*;S™).

Taking into account parity and angular momentum
conservations, the density of electrons with polarization

S° in a polarized atom can be written as
g(b,k*,8%;8%) = (q(b,k+)/2)[1+COn s1h+C 8%
+C,,, (S¢-n)(S?1-n)+Cyy S¢sA+Cp, S¢S -7)

Cy (S¢-)SA+C,, (S€-7)(SA 7)),
where t=b/b and n=zx#a . The G,

(16)

's also are func-

tions of b and k" . A similar equation can be written in
the k, representation. Integrating (16) over b leaves
the following spin correlations:
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q(k*,8%;8™)
y 4 17)
=12] g(k™)+ Aq(k™) SES2 + 8q(k7) S5-87 |,

where Ag(k") and Sq(k™) are the helicity and trans-
versity distributions.

4.1. FORMULAS FOR THE POLARIZED
DENSITIES IN (b,k") AND (k,,k")

For the j. =+1/2 state, ® of Eq.(11) can be writ-
ten as

Db,k S" = +7) =( ,WM,J;
—lve

. (18)
+ A a w
Ok, ,k";S —+z)—( B i¢j'
—ve
For the j. =-1/2 state,
. i
CD(b,k*;SA——i)—(We j;
w
(19)

~ i}
Dk, k'S =—i)=(ve~ ]

w

For other orientations of S*, one takes linear com-
binations of (18) and (19). The (b,£") distribution de-
pends of z, only in an over-all phase. Choosing z, =0,

v(b,k") and w(b,k") are real and given by
o0 b g+ 7 7
(VJ :I dz[ §' j o z+iEz—iy(b,z) Y, (20)
w - \r+i&z
where &= Za/(1+7), y=E/m, =\1-(Za)* and

_ I+y
/) (87tl“(1 +27)

is the 1S radial wave function. Then,
q(b,k") =
C,b,k)y =1
Co, b,k )=C (bk") =
C,(b,k")=C_ (b,k") = (W =)W +v*),
C,(b,k)Y=C,bk") = 0.

1/2
j 2m,Za)"? r"™ exp(-m,Zar) (21)
w? %

2 wul(w* +v*);  (22)

Note that C,, (b,k")# 0, which gives an asymmet-

rical impact parameter profile for a transversely polar-
ized atom.

The (k,,k") distribution depends on z,. Taking
z, = Foo makes (8) divergent. In practice we will as-
sume that |z,| is large but finite, accounting for a
screening of the Coulomb potential. It gives

1(b,z) = ~Zalsinh™ (z/b) - &(zo Jn(2lzo|/5)] . (23)

with €(0)=0 and &(Fo)=FI1, the upper sign corre-
sponding to Compton scattering and the lower sign to
annihilation. Modulo an overall phase,

[vfj =2n[ b db p7eeC) [J o (D) w(b ’k+)J. (24)
7 0 J,(ky ) (b, k)

The analogue of (22) is
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qlkr k) = W[ +[9[

C, (k, k") =1

C,, (ky k)= C, (kp k™) = 23 W/( W[ +| V)

Cylhy k") = Colhp k') = (W =[VPY(WE +] V).

C, .k, k")==C (ky, k') = 2RFW( W[ +|V[).
(25)

These coefficients are related to the structure func-
tions listed in Ref.[8]. For the "most intrinsic" gauge
z,=0, w and ¥ are real so that C,,(k,,k")=0 (no
Sivers effects). This is in accordance with time reversal
invariance [7]. For the “Compton” and "annihilation"
gauges (z, =F1), w and v are complex numbers, so
that Sivers [9-10] effect (C,,(k,,k")# 0 and the Boer-
Mulders [8] effect (C,,(k,, k") # 0 take place.

In the Compton case the factor 5~“* behaves like a
converging cylindrical wave. Multiplying ®(r), it op-
erates as a boost toward the z axis, interpreted as the
"focusing" of the final particle by the Coulomb field
[10]. This focusing converts the asymmetry in b for a
transversely polarized atom into the Sivers asymmetry
in k, . The opposite effect (defocusing of the positron)

takes place in the annihilation case.
4.2. SUM RULES

Integrating (17) over k', one obtains the vector, ax-
ial and tensor charges

q=Id3r ¥ (r; S P(r;S*) =1; (26)
Ag=8" ~jd3r ¥ (r;8") T ¥(r;8") = 1_iz?; (27)
1+§
8g=S"[d'r ¥ (1:8") BE ¥(r;S") = 1%2?. (28)
1+§

Note the big "helicity crisis", Ag =1/3 instead of 1
as naively expected, for Za. =1.
4.2.1. SUM RULE FOR THE ATOM MAGNETIC

MOMENT

Consider a classical object of mass M , charge Q,
spin J and time-averaged magnetic moment p in its
rest frame. In this frame, the centre of energy r, and
the average center of charge (r.) coincide, say at
r=0. Upon a boost of velocity v, r, and (r.) un-
dergo the lateral displacements

b, =vxJ/M, (b.)=vxwO.

b, and (b.) coincide if the gyromagnetic ratio has the

(29)

Dirac value Q/M . In our case, b is negligible due to

the large nucleus mass, therefore the magnetic moment
is almost totally anomalous. In the infinite momentum
or null-plane frame (v =2) one observes an electric
dipole moment [11]

—e (b) =, 2x8", (30)
which we can calculate from C,,(b,k"). Weighting

(14) with b_=x for S =§ one obtains



(x) ==(1+2y)/(6m,) (31
which is in accordance with the relativistic result for the
atomic magnetic moment p, =-—e (1+2y)/(6m,) (ig-
noring the anomalous magnetic moment of the electron
itself).

4.3. POSITIVITY CONSTRAINTS

The spin correlations between the electron and the
atom can be encoded in a positive-definite "grand den-
sity matrix" R [12],

R=C, o' ®[c!]. (32)

Here p and v run from 0 to 3, summation is under-

stood over repeated indices, " =/ and C,, =1. R
can be seen as the density matrix of the final state in the
crossed reaction nucleus — atom(S”)+e*(-S°). Be-
sides the trivial conditions |C; <1 the positivity of R
gives
(1£C,,)" 2(C,  £C,,) +(C, £C)" +(C, ¥C,)". (33)
These two inequalities agree with those of Ref. [13].
Together with |C, |<1 they are saturated by (22) or
(25). This maximal strength of the spin correlation

means that the information contained in the atom polari-
zation is fully transferred to the electron, once the other

degrees of freedom (k" and b or k, ) have been fixed.

If we integrate over k', for instance, some information
is lost and some positivity conditions get non-saturated.
The same happens if there are “spectators” electrons
which keep part of the information for themselves.
After integration over b or k, , we are left with the

Soffer inequality [14],
210q(k™) < q(k™)+Aq(k™),

which are saturated by (26-28).

Note that a complete anti-correlation between the
atom and the electron spins, C, =C,, =C_ =-1 and
C..

i#]

q(b,k",8°:8") = q(b, k™) (1-8°-8")2,

violates the positivity conditions, although the last ex-
pression is positive for any S° and S”. In fact such a

(34)

=0, leading to

correlation would make (A,e" |R| A,e") negative for

some entangled states | A,e”) in the crossed channel,
in particular the spin-singlet state [12].

5. THE ELECTRON-POSITRON SEA

The charge rule (26) receives positive contributions
from both positive and negative values of £". So the
contribution of the positive k* domain is less than
unity. On the other hand, physical electrons have posi-
tive k. It seems therefore that there is less than one
physical electron in the atom. This paradox is solved by
the second quantification and the introduction of the
electron-positron sea.

Let us denote by |n) an electron state in the Cou-

lomb field. Quantizing the states in a box, we take n to

be integer. Negative n's are assigned to negative energy
states. Positive n's up to n, label the bound states
(=m, <E, <+m,) and the remaining ones from n, +1
to +oo label the positive energy scattering states,
E >+m,. Let |k,s) be the plane wave with four-
momentum % and spin s, solution of the free Dirac

equation. The destruction and creation operators in the
interacting and free bases are related by

a,, =Y (ksinya,, af = a (n|k,s). (35)

In the Dirac hole theory, the hydrogen-like atom is
in the Fock state

|H)Y=a' a' a',---a', | Dirac-bare nucleus).  (36)

“Dirac-bare” means that all Dirac states, including
the negative energy ones, are empty. The number of
electrons of momentum k and spin § (with positive

k" and k") in the atom is

a 2
N;tom(kas) = <0511S ak,s>atom =|(k,s|n)|

+3 [k,s [0y [P

n'<0

(37

A stripped ion is a "Dirac-dressed" nucleus, all nega-
tive energy states being occupied. For the ion the factor

aI of (36) is missing and the first term of (37) is absent.

By difference,
Now=Nop= 3 SltkesimP= [ % gk, 68)
k,k0>0 s k >0 27[

the last expression being for the continuum limit
(kys|ny > OK,,k7).
Positrons are holes in the Dirac sea. The number of

positrons of momentum k (with positive k° and k)
and spin s in the atom is

Nyon 6,5 =0 0p Y = 2 14=K,=5 | n) [.(39)
0<n'#n

For the ion, the condition n'#n is relaxed. By dif-

ference,
&t ket

Nion - Natom - k+<02_n Q(k )3
where we have made the change of variable k =—k .
The sum rule (26) can therefore be interpreted in the
following way:
e for k* >0, g(k*)= (e distrib. in atom) - (e~ distrib.

(40)

in ion)
o for k" <0, g(k")= (&' distrib. in ion) - (e* distrib.
in atom).

Thus

(Vi = N )+ (Vi = V2L ) =1, (1)
where each bracket e[0,1]. Introducing
Q°=N°-N <" this can be rewritten as

Oriom = Gin =1 (42)

Qs is the electronic charge renormalization of the ion
on the null plane. It is more likely positive, maybe infi-
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nite for a point-like nucleus. The renormalization
0:... —1 of the atom is equal to it. It may be interesting

atom

to relate Q; with the result of covariant QED.

dNC /dk* and dNC /dk*

ion ions

dN® Jdk*,

atom

dn¢, Jdk"
are separately measured in the deep inelastic reactions
listed in Section 1 and their generalizations to the elec-

tron-positron sea, for instance

Y(K)+seae” — y(K+Q)+ free e (k). (43)

A “sea” electron can be equally understood in the
sense given by Feyman in the parton model or by Dirac
in the hole theory. It gives the second term of (37) and
the whole process is

Yy+A4-—>y' +A+slow e +faste. (44)

A “sea” positron is understood in the Feynman sense
only. In the hole theory, an electron of large negative
energy is lifted to a bound or slow free state |n'y. It

gives the right-hand side of (39). The whole process is

y+H, > H,  +faste’ +y' (45)

Of course, one can permute the roles of the electron
and the positron in the Dirac theory; then Feynman and
Dirac sea positrons become equivalent.

6. MOMENTUM SUM RULE

q(k+) obeys a momentum sum rule which, like the

charge sum rule, applies to the difference between the
atom and the ion.

The null-plane momentum of the ion (=nucleus) can
be decomposed into a matter part and a Coulomb field
part:

R;n =M, = Pn:ranerN + 13ﬁ+eld {EN} (46)
P ...n includes the momentum of the electron cloud

which renormalize the ion charge. Py, {E,} is the flux

of the 7" =T" +T? component of the energy-
momentum tensor 7" {E,} of the nucleus Coulomb

field E, (r) across the null plane:

BalBy) = [(T"{E}+77{E,})do,
= [axdydz (T +T% +T7 +T%) (47)
= J‘dxdydz(Ex2+Ej).
We have used do,=(1,0,0,1)dxdydz ,

" =(E*+B)/2, 7% =T"-E’-B?,
T% =T =EB —EB,. Similarly, for the atom, we
have

P..=M,=P; +P° +P

atom matter N bare e field

{EN +E, ;Be} (48)

+

the electron magnetic field being included. Here F,_. _,

E, and B, take only into account the difference be-
tween the atomic and ionic electron clouds. Subtracting
(46) from (48),

E=M,-M, =P +P,

e int*®

(49)
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+
Pim

results from the crossed terms in E,, and E, or B,

of T . Its value is
P o= 2 jd3r [ Ey(E,+B,)+Ey(E,-B,)

50)
_ Ap _4 (
= gjd rEN~Ee—§<V>.

(V) 1is the average potential energy. The terms in E, B,
have disappeared upon angular integration.
P’ =P +PFu{E.} is the mean value of the null-

bare e field
plane mechanical momentum k* of the physical elec-
tron (more precisely the “atom - minus — ion” part of it).
Inserting k" = E—id_ in Eqs.(9), one obtains

+ +oo +£ +y — _i

P="k S Ak =E-(7) (1)
with

@y =[d'r ¥ () V() W) =-m (ZaY ly.  (52)

Eqs.(49-51) constitute the momentum sum rule.

7. CONCLUSION

This study has shown the rich spin and k, structure

of the hydrogen-like atom at large Z when it is ob-
served in the infinite momentum (or null-plane) frame.
Without the complications of QCD, like gluon self-
interaction and confinement, many properties attributed
to the leading twist hadronic structure functions have
been found and clearly interpreted here, in particular:
the sum rules, the spin crisis, the connection between
(b) # 0 and the Sivers effect, the relation between (b)
and the magnetic moment, the role of spectators in the
positivity constraints, the existence of a Feynman sea.
With this "theoretical laboratory" one may also investi-
gate non-leading twist structure functions, elastic form
factor a la Isgur-Wise, etc. Our results are interesting
also in pure QED. We have seen a connection between
the nucleus charge renormalization and the unpolarized

deep inelastic structure function of the e¢* cloud of a
stripped ion target. Thus the charge renormalization can
be analyzed experimentally in deep inelastic Compton,
Moller or annihilation processes. The same reactions at
the 10 MeV energy scale can test the relativistic correc-
tions to the electronic wave functions of large Z atoms.

The  PowerPoint document  presented  at
QEDSP2006, which contains figures not presented here,
can be obtained upon request to one author (X. A.).
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BOJIOPOJIONO/IOBHBIN ATOM C BOJILIINM Z:
MOJEJb JJISI TIOJAPU3ALIMOHHBIX CTPYKTYPHBIX ®YHKIAN

K. Apmpy, K. Benxuzusn

VYpaBHenue [lupaka 1aeT TOYHOE aHAIUTUYECKOE ONMCAHUE PEIATUBUCTCKUX CBSI3aHHBIX COCTOSIHMM JBYX 4Yac-
TUL, €CJIM OJHA U3 HUX OYCHb TsKEJIas, a paJuallMOHHBIMU ITOIMIPpaBKaMU MOKHO npeHe6peqb. PaCCMa’I‘pI/IBaﬂ BOJI0-
POIONOA00HEIH aTOM ¢ OOJIBIINM Z B CHCTEME OECKOHEYHOT0 MMILYJIbCa M TPAKTYs! 3JIEKTPOH Kak "mapToH", MpoBe-
PEHBI pa3iuYHbIE CBOMCTBA, OOBIYHO MPUIMCHIBAEMBIE PAacIpe/IeIeHHsIM KBapKOB B HYKJIOHE, B YaCTHOCTH, brépke-
HOBCKHI CKEHJIMHT; IpaBHjIa CyMM JUIsl 3apsijia, COIMPaIbHOCTH, NONEPEYHOH MTOJSIpU3alny, UMITYJIbCa; CYIIECTBO-
BaHHE “‘MOps” mapTOHOB; HepaBeHCTBO Coddepa; Kopperanus MeXIy CIIHHOM H MOTIePEIHBIM UMITYJIECOM (3 dek-
Tl CuBepca u Bypa-Manzepca); nomnepedHoe cMelIeHne LIEHTPa 3apsiia U ero CBA3b C MArHUTHBIM MOMEHTOM. Pac-
CMOTpPEHBI SKCIIEPHIMEHTHI 10 INIyOOKOHEYIIPYTHM IpolieccaM Ha ()OTOHHBIX MJIM IO3UTPOHHBIX ITyYKaX MeTadlieK-
TPOHBOJIETHBIX SHEPIUii, aHAJIOTUYHbIE TITyOOKO HEYIIPYroMy paccesHuIo, oo npoueccy pemia-xa.

BOJHENOAIGHUI ATOM 3 BEJIMKUM Z:
MOJAEJIB JJUIA HOJAPUSAINIMHUX CTPYKTYPHUX ®@YHKIIU

K. Apmpy, K. Benxizia

PiBHsiHus [lipaka [a€ TOYHUN aHATITUYHUN ONMKC PEIIATHUBICTCHKHX 3B'SI3aHUX CTAHIB i3 TBOMA YaCTHHKAMH, SK-
10 OJIHA 3 HHUX OY)K€ BaXKKa, a pamialliiHMMM MOIpPaBKaMH MOXKJIMBO 3HEXTYBaTH. Po3risnarodu BoAHENONiOHMI
aTOM 3 BEJIIMKUM Z y CHUCTEMI HECKIHUYEHHOTO IMITYJIbCy Ta TPaKTYIOUM €JIEKTPOH sIK "mapToH", IepeBipeHo pi3Hi
BJIACTHBOCTI, 3BUYAHHO MPUIIMCYBaHI pO3IMOIiiaM KBapKiB y HYKJIOHI, 30KkpeMa: b’HOpKeHIBChbKUIA CKEIIIiHT; npaBu-
Ja CyM JUIsl 3apsiiy, CHipalbHOCTI, MOMEPEYHOl MoJisipu3allii, iIMIyNbCy; iCHYBaHHSI NMApTOHIB “MOps”; HEpIBHICTh
Coddepa; xopemsiuis Mk cnuHOM 1 monepeyHuM iMmyibscoM (edextn CiBepca Ta bypa-Mannepca); nonepeune
3MIIIEHHsT LEHTPY 3apsay Ta HOro 3B'SI30K 3 MarHiTHUIM MOMEHTOM. PO3IIISTHYTO €KCIIEpUMEHTH 3 TJIHOOKO-
HETPY’KHOTO PO3Cil0BaHHA (POTOHHHX a0O0 MO3UTPOHHMX ITYyUKiB METaeleKTPOHBOJIBTHUX €HEprii, MOAiOHI 10 TiH-
OOKOHETIPYKHOTO po3CisHHA abo mpouecy pemna-Ha.
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